1887

Abstract

African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available and progress is hindered by lack of knowledge concerning the extent of ASF virus (ASFV) strain diversity and the viral antigens responsible for protection in the pig. Available data from vaccination/challenge experiments in pigs indicate ASF protective immunity is haemadsorption inhibition (HAI) serotype-specific. A better understanding of ASFV HAI serological groups and their diversity in nature, as well as improved methods to serotype ASFV isolates, is needed. Here, we demonstrated that the genetic locus encoding ASFV CD2v and C-type lectin proteins mediates HAI serological specificity and that CD2v/C-type lectin genotyping provides a simple method to group ASFVs by serotype, thus facilitating study of ASFV strain diversity in nature, and providing information necessary for eventual vaccine design, development and efficacious use.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000024
2015-04-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/866.html?itemId=/content/journal/jgv/10.1099/jgv.0.000024&mimeType=html&fmt=ahah

References

  1. Balyshev V. M., Fedorishhev I. V., Salina M. V. 1995; [Study of serotype interactions of ASF virus strains both in vitro and in vivo]. In Viral Diseases of Animals p. 230 Vladimir: FGBI ARRIAH (in Russian);
    [Google Scholar]
  2. Balyshev V. M., Kalantaenko J. F., Zhoukov A. N. 2010; [Immunobiological and molecular-genetic characteristics of ASF virus isolates detected in the RF]. In Oriented and Fundamental Research, and their Implementation in the Agricultural Kompeks Russia: Proceedings of the Scientific Conference pp. 94–98 Moscow: LLC “Poligraf” (in Russian);
    [Google Scholar]
  3. Borca M. V., Kutish G. F., Afonso C. L., Irusta P., Carrillo C., Brun A., Sussman M., Rock D. L. 1994; An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology 199:463–468 [View Article][PubMed]
    [Google Scholar]
  4. Borca M. V., Carrillo C., Zsak L., Laegreid W. W., Kutish G. F., Neilan J. G., Burrage T. G., Rock D. L. 1998; Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol 72:2881–2889[PubMed]
    [Google Scholar]
  5. Chapman D. A., Tcherepanov V., Upton C., Dixon L. K. 2008; Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol 89:397–408 [View Article][PubMed]
    [Google Scholar]
  6. Coggins L. 1968; A modified hemadsorption-inhibition test for African swine fever virus. Bull Epizoot Dis Afr 16:61–64[PubMed]
    [Google Scholar]
  7. Coggins L. 1974; African swine fever virus. Pathogenesis. Prog Med Virol 18:48–63[PubMed]
    [Google Scholar]
  8. Cubillos C., Gómez-Sebastian S., Moreno N., Nuñez M. C., Mulumba-Mfumu L. K., Quembo C. J., Heath L., Etter E. M., Jori F. other authors 2013; African swine fever virus serodiagnosis: a general review with a focus on the analyses of African serum samples. Virus Res 173:159–167 [View Article][PubMed]
    [Google Scholar]
  9. Detray D. E. 1957; Persistence of viremia and immunity in African swine fever. Am J Vet Res 18:811–816[PubMed]
    [Google Scholar]
  10. Diel D. G., Luo S., Delhon G., Peng Y., Flores E. F., Rock D. L. 2011; A nuclear inhibitor of NF-kappaB encoded by a poxvirus. J Virol 85:264–275 [View Article][PubMed]
    [Google Scholar]
  11. Ewing B., Green P. 1998; Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194 [View Article][PubMed]
    [Google Scholar]
  12. Ewing B., Hillier L., Wendl M. C., Green P. 1998; Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185 [View Article][PubMed]
    [Google Scholar]
  13. Galindo I., Almazán F., Bustos M. J., Viñuela E., Carrascosa A. L. 2000; African swine fever virus EP153R open reading frame encodes a glycoprotein involved in the hemadsorption of infected cells. Virology 266:340–351 [View Article][PubMed]
    [Google Scholar]
  14. Gallardo C., Soler A., Nieto R., Carrascosa A. L., De Mia G. M., Bishop R. P., Martins C., Fasina F. O., Couacy-Hymman E. other authors 2013; Comparative evaluation of novel African swine fever virus (ASF) antibody detection techniques derived from specific ASF viral genotypes with the OIE internationally prescribed serological tests. Vet Microbiol 162:32–43 [View Article][PubMed]
    [Google Scholar]
  15. Gogin A., Gerasimov V., Malogolovkin A., Kolbasov D. 2013; African swine fever in the North Caucasus region and the Russian Federation in years 2007–2012. Virus Res 173:198–203 [View Article][PubMed]
    [Google Scholar]
  16. Gómez-Puertas P., Rodríguez F., Oviedo J. M., Brun A., Alonso C., Escribano J. M. 1998; The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243:461–471 [View Article][PubMed]
    [Google Scholar]
  17. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202 [View Article][PubMed]
    [Google Scholar]
  18. Gouy M., Guindon S., Gascuel O. 2010; SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224 [View Article][PubMed]
    [Google Scholar]
  19. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 [View Article][PubMed]
    [Google Scholar]
  20. Katoh K., Misawa K., Kuma K., Miyata T. 2002; mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066 [View Article][PubMed]
    [Google Scholar]
  21. Kay-Jackson P. C., Goatley L. C., Cox L., Miskin J. E., Parkhouse R. M., Wienands J., Dixon L. K. 2004; The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. J Gen Virol 85:119–130 [View Article][PubMed]
    [Google Scholar]
  22. Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R. M., Portugal F., Vigário J. D., Martins C. L. 2001; The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J Gen Virol 82:513–523[PubMed]
    [Google Scholar]
  23. Lewis T., Zsak L., Burrage T. G., Lu Z., Kutish G. F., Neilan J. G., Rock D. L. 2000; An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J Virol 74:1275–1285 [View Article][PubMed]
    [Google Scholar]
  24. Malmquist W. A. 1963; Serologic and immunologic studies with African swine fever virus. Am J Vet Res 24:450–459[PubMed]
    [Google Scholar]
  25. Malogolovkin A., Burmakina G., Titov I., Baryshnikova E., Kolbasov D. 2015; Comparative analysis of African swine fever virus genotypes and serogroups. Emerg Infect Dis 21: (in press) [CrossRef]
    [Google Scholar]
  26. Mebus C. A. 1988; African swine fever. Adv Virus Res 35:251–269 [View Article][PubMed]
    [Google Scholar]
  27. Montgomery R. E. 1921; On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol 34:159–191 [View Article]
    [Google Scholar]
  28. Neilan J. G., Borca M. V., Lu Z., Kutish G. F., Kleiboeker S. B., Carrillo C., Zsak L., Rock D. L. 1999; An African swine fever virus ORF with similarity to C-type lectins is non-essential for growth in swine macrophages in vitro and for virus virulence in domestic swine. J Gen Virol 80:2693–2697[PubMed]
    [Google Scholar]
  29. Pan I. C., Trautman R., Hess W. R., DeBoer C. J., Tessler J., Ordas A., Botija C. S., Ovejero J., Sánchez M. C. 1974; African swine fever: comparison of four serotests on porcine serums in Spain. Am J Vet Res 35:787–790[PubMed]
    [Google Scholar]
  30. Rice P., Longden I., Bleasby A. 2000; emboss: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [View Article][PubMed]
    [Google Scholar]
  31. Rodríguez J. M., Yáñez R. J., Almazán F., Viñuela E., Rodríguez J. F. 1993; African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. J Virol 67:5312–5320[PubMed]
    [Google Scholar]
  32. Ruíz G. F., Carnero M. E., Bruyel V. 1981; Immunological responses of pigs to partially attenuated ASF and their resistance to virulent homologous and heterologous viruses. In FAO/CEC Expert Consultation in ASF Research pp. 206–216 Edited by Wilkinson P. J. Rome: FAO;
    [Google Scholar]
  33. Ruíz-Gonzalvo F., Coll J. M. 1993; Characterization of a soluble hemagglutinin induced in African swine fever virus-infected cells. Virology 196:769–777 [View Article][PubMed]
    [Google Scholar]
  34. Ruíz-Gonzalvo F., Carnero M. E., Caballero C., Martínez J. 1986; Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro . Am J Vet Res 47:1249–1252[PubMed]
    [Google Scholar]
  35. Ruíz-Gonzalvo F., Rodríguez F., Escribano J. M. 1996; Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 218:285–289 [View Article][PubMed]
    [Google Scholar]
  36. Sánchez-Vizcaíno J. M., Mur L., Martínez-López B. 2013; African swine fever (ASF): five years around Europe. Vet Microbiol 165:45–50 [View Article][PubMed]
    [Google Scholar]
  37. Sereda A. D., Balyshev V. M. 2011; Antigenic diversity of African swine fever viruses. Vopr Virusol 56:38–42 (in Russian) [PubMed]
    [Google Scholar]
  38. Sereda A. D., Solovkin S. L., Fugina L. G., Makarov V. V. 1992; Immune reactions to the African swine fever virus. Vopr Virusol 37:168–170 (in Russian) [PubMed]
    [Google Scholar]
  39. Tulman E. R., Delhon G. A., Ku B. K., Rock D. L. 2009; African swine fever virus. Curr Top Microbiol Immunol 328:43–87[PubMed]
    [Google Scholar]
  40. Vigário J. D., Terrinha A. M., Bastos A. L., Moura-Nunes J. F., Marques D., Silva J. F. 1970; Serological behaviour of isolated African swine fever virus. Arch Gesamte Virusforsch 31:387–389 [View Article][PubMed]
    [Google Scholar]
  41. Vigário J. D., Terrinha A. M., Moura Nunes J. F. 1974; Antigenic relationships among strains of African swine fever virus. Arch Gesamte Virusforsch 45:272–277 [View Article][PubMed]
    [Google Scholar]
  42. Vishnjakov I., Mitin N., Karpov G., Kurinnov V., Jashin A. 1991; Differentiation African and classical swine fever viruses. Veterinariya 4:28–31 (in Russian)
    [Google Scholar]
  43. Vishnjakov I. F., Mitin N. I., Petrov J. I. 1995; [Seroimmunological classification of African swine fever virus natural isolates]. In Topical Issues of Veterinary Virology. Proceedings of the Conference VNIIVViM: Classical Swine Fever Urgent Problems of Science and Practice pp. 141–143 Pokrov: VNIIVViM (in Russian);
    [Google Scholar]
  44. Zsak L., Lu Z., Kutish G. F., Neilan J. G., Rock D. L. 1996; An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. J Virol 70:8865–8871[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000024
Loading
/content/journal/jgv/10.1099/jgv.0.000024
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error