1887

Abstract

Marek’s disease virus (MDV) is an important oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in its natural hosts. The Meq-clustered miRNAs encoded by MDV have been suggested to play potentially critical roles in the induction of lymphomas. Using the technique of bacterial artificial chromosome mutagenesis, we have presently constructed a series of specific miRNA-deleted mutants and demonstrate that these miRNAs are not essential for replication of MDV and have no effects on the early cytolytic or latent phases of the developing disease. However, compared to the parental GX0101, mortality of birds infected with the mutants GXΔmiR-M2, GXΔmiR-M3, GXΔmiR-M5, GXΔmiR-M9 and GXΔmiR-M12 was reduced from 100 % to 18 %, 30 %, 48 %, 24 % and 14 %, coupled with gross tumour incidence reduction from 28 % to 8 %, 4 %, 12 %, 8 % and 0 %, respectively. Our data confirm that except for mdv1-miR-M4, the other Meq-clustered miRNAs also play critical roles in MDV oncogenesis. Further work will be needed to elucidate the miRNA-mediated regulatory mechanisms that trigger the development of MD lymphomas.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000013
2015-03-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/3/637.html?itemId=/content/journal/jgv/10.1099/jgv.0.000013&mimeType=html&fmt=ahah

References

  1. Abdul-Careem M. F. , Hunter B. D. , Nagy E. , Read L. R. , Sanei B. , Spencer J. L. , Sharif S. . ( 2006; ). Development of a real-time PCR assay using SYBR Green chemistry for monitoring Marek’s disease virus genome load in feather tips. . J Virol Methods 133:, 34–40. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baigent S. J. , Davison F. . ( 2004; ). Marek’s disease virus: biology and life cycle. . In Marek’s Disease, an Evolving Problem, pp. 62–77. Edited by Davison F. , Nair V. . . Oxford:: Elsevier Academic Press;.
    [Google Scholar]
  3. Baigent S. J. , Petherbridge L. J. , Howes K. , Smith L. P. , Currie R. J. , Nair V. K. . ( 2005; ). Absolute quantitation of Marek’s disease virus genome copy number in chicken feather and lymphocyte samples using real-time PCR. . J Virol Methods 123:, 53–64. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bartel D. P. . ( 2004; ). MicroRNAs: genomics, biogenesis, mechanism, and function. . Cell 116:, 281–297. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boss I. W. , Plaisance K. B. , Renne R. . ( 2009; ). Role of virus-encoded microRNAs in herpesvirus biology. . Trends Microbiol 17:, 544–553. [CrossRef] [PubMed]
    [Google Scholar]
  6. Burnside J. , Bernberg E. , Anderson A. , Lu C. , Meyers B. C. , Green P. J. , Jain N. , Isaacs G. , Morgan R. W. . ( 2006; ). Marek’s disease virus encodes microRNAs that map to meq and the latency-associated transcript. . J Virol 80:, 8778–8786. [CrossRef] [PubMed]
    [Google Scholar]
  7. Calin G. A. , Croce C. M. . ( 2006; ). MicroRNA signatures in human cancers. . Nat Rev Cancer 6:, 857–866. [CrossRef] [PubMed]
    [Google Scholar]
  8. Calnek B. W. . ( 2001; ). Pathogenesis of Marek’s disease virus infection. . Curr Top Microbiol Immunol 255:, 25–55.[PubMed]
    [Google Scholar]
  9. Chi J. Q. , Teng M. , Yu Z. H. , Xu H. , Su J. W. , Zhao P. , Xing G. X. , Liang H. D. , Deng R. G. , Qu L. H. , Zhang G. P. , Luo J. . ( 2015; ). Marek's disease virus-encoded analog of microRNA-155 activates the oncogene c-Myc by targeting LTBP1 and suppressing the TGF-β signaling pathway. . Virology 476:, 72–84.[CrossRef]
    [Google Scholar]
  10. Coupeau D. , Dambrine G. , Rasschaert D. . ( 2012; ). Kinetic expression analysis of the cluster mdv1-mir-M9-M4, genes meq and vIL-8 differs between the lytic and latent phases of Marek’s disease virus infection. . J Gen Virol 93:, 1519–1529. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cui Z. Z. , Zhuang G. Q. , Xu X. Y. , Sun A. J. , Su S. . ( 2010; ). Molecular and biological characterization of a Marek’s disease virus field strain with reticuloendotheliosis virus LTR insert. . Virus Genes 40:, 236–243. [CrossRef] [PubMed]
    [Google Scholar]
  12. Datsenko K. A. , Wanner B. L. . ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef] [PubMed]
    [Google Scholar]
  13. Davison A. J. , Eberle R. , Ehlers B. , Hayward G. S. , McGeoch D. J. , Minson A. C. , Pellett P. E. , Roizman B. , Studdert M. J. , Thiry E. . ( 2009; ). The order Herpesvirales . . Arch Virol 154:, 171–177. [CrossRef] [PubMed]
    [Google Scholar]
  14. Faraoni I. , Antonetti F. R. , Cardone J. , Bonmassar E. . ( 2009; ). miR-155 gene: a typical multifunctional microRNA. . Biochim Biophys Acta 1792:, 497–505. [CrossRef] [PubMed]
    [Google Scholar]
  15. Filipowicz W. , Bhattacharyya S. N. , Sonenberg N. . ( 2008; ). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet 9:, 102–114. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gottwein E. , Mukherjee N. , Sachse C. , Frenzel C. , Majoros W. H. , Chi J. T. , Braich R. , Manoharan M. , Soutschek J. . & other authors ( 2007; ). A viral microRNA functions as an orthologue of cellular miR-155. . Nature 450:, 1096–1099. [CrossRef] [PubMed]
    [Google Scholar]
  17. Grundhoff A. , Sullivan C. S. . ( 2011; ). Virus-encoded microRNAs. . Virology 411:, 325–343. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jarosinski K. W. , Tischer B. K. , Trapp S. , Osterrieder N. . ( 2006; ). Marek’s disease virus: lytic replication, oncogenesis and control. . Expert Rev Vaccines 5:, 761–772. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kincaid R. P. , Sullivan C. S. . ( 2012; ). Virus-encoded microRNAs: an overview and a look to the future. . PLoS Pathog 8:, e1003018. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lee Y. S. , Dutta A. . ( 2009; ). MicroRNAs in cancer. . Annu Rev Pathol 4:, 199–227. [CrossRef] [PubMed]
    [Google Scholar]
  21. Luo J. , Teng M. , Fan J. M. , Wang F. Y. , Zhou L. , Deng R. G. , Zhang G. P. . ( 2010; ). Marek’s disease virus-encoded microRNAs: genomics, expression and function. . Sci China Life Sci 53:, 1174–1180. [CrossRef] [PubMed]
    [Google Scholar]
  22. Luo J. , Sun A. J. , Teng M. , Zhou H. , Cui Z. Z. , Qu L. H. , Zhang G. P. . ( 2011; ). Expression profiles of microRNAs encoded by the oncogenic Marek’s disease virus reveal two distinct expression patterns in vivo during different phases of disease. . J Gen Virol 92:, 608–620. [CrossRef] [PubMed]
    [Google Scholar]
  23. Morgan R. W. , Burnside J. . ( 2011; ). Roles of avian herpesvirus microRNAs in infection, latency, and oncogenesis. . Biochim Biophys Acta 1809:, 654–659. [CrossRef] [PubMed]
    [Google Scholar]
  24. Morgan R. , Anderson A. , Bernberg E. , Kamboj S. , Huang E. , Lagasse G. , Isaacs G. , Parcells M. , Meyers B. C. . & other authors ( 2008; ). Sequence conservation and differential expression of Marek’s disease virus microRNAs. . J Virol 82:, 12213–12220. [CrossRef] [PubMed]
    [Google Scholar]
  25. Muylkens B. , Coupeau D. , Dambrine G. , Trapp S. , Rasschaert D. . ( 2010; ). Marek’s disease virus microRNA designated Mdv1-pre-miR-M4 targets both cellular and viral genes. . Arch Virol 155:, 1823–1837. [CrossRef] [PubMed]
    [Google Scholar]
  26. Muyrers J. P. , Zhang Y. , Testa G. , Stewart A. F. . ( 1999; ). Rapid modification of bacterial artificial chromosomes by ET-recombination. . Nucleic Acids Res 27:, 1555–1557. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nair V. , Kung H. J. . ( 2004; ). Marek’s disease virus oncogenicity: molecular mechanisms. . In Marek’s Disease, an Evolving Problem, pp. 32–48. Edited by Davison F. , Nair V. . . Oxford:: Elsevier Academic Press;.
    [Google Scholar]
  28. Narayanan K. R. , Williamson R. , Zhang Y. , Stewart A. F. , Ioannou P. A. . ( 1999; ). Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. . Gene Ther 6:, 442–447. [CrossRef] [PubMed]
    [Google Scholar]
  29. Osterrieder N. , Kamil J. P. , Schumacher D. , Tischer B. K. , Trapp S. . ( 2006; ). Marek’s disease virus: from miasma to model. . Nat Rev Microbiol 4:, 283–294. [CrossRef] [PubMed]
    [Google Scholar]
  30. Petherbridge L. , Howes K. , Baigent S. J. , Sacco M. A. , Evans S. , Osterrieder N. , Nair V. . ( 2003; ). Replication-competent bacterial artificial chromosomes of Marek’s disease virus: novel tools for generation of molecularly defined herpesvirus vaccines. . J Virol 77:, 8712–8718. [CrossRef] [PubMed]
    [Google Scholar]
  31. Petherbridge L. , Brown A. C. , Baigent S. J. , Howes K. , Sacco M. A. , Osterrieder N. , Nair V. K. . ( 2004; ). Oncogenicity of virulent Marek’s disease virus cloned as bacterial artificial chromosomes. . J Virol 78:, 13376–13380. [CrossRef] [PubMed]
    [Google Scholar]
  32. Rai D. , Kim S. W. , McKeller M. R. , Dahia P. L. , Aguiar R. C. . ( 2010; ). Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. . Proc Natl Acad Sci U S A 107:, 3111–3116. [CrossRef] [PubMed]
    [Google Scholar]
  33. Schumacher D. , Tischer B. K. , Fuchs W. , Osterrieder N. . ( 2000; ). Reconstitution of Marek’s disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant. . J Virol 74:, 11088–11098. [CrossRef] [PubMed]
    [Google Scholar]
  34. Su S. , Cui N. , Cui Z. , Zhao P. , Li Y. , Ding J. , Dong X. . ( 2012; ). Complete genome sequence of a recombinant Marek’s disease virus field strain with one reticuloendotheliosis virus long terminal repeat insert. . J Virol 86:, 13818–13819. [CrossRef] [PubMed]
    [Google Scholar]
  35. Sun A. J. , Lawrence P. , Zhao Y. G. , Li Y. P. , Nair V. , Cui Z. Z. . ( 2009; ). A BAC clone of MDV strain GX0101 with REV-LTR integration retained its pathogenicity. . Chin Sci Bull 54:, 2641–2647. [CrossRef]
    [Google Scholar]
  36. Sun A. J. , Xu X. Y. , Petherbridge L. , Zhao Y. G. , Nair V. , Cui Z. Z. . ( 2010; ). Functional evaluation of the role of reticuloendotheliosis virus long terminal repeat (LTR) integrated into the genome of a field strain of Marek’s disease virus. . Virology 397:, 270–276. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tili E. , Croce C. M. , Michaille J. J. . ( 2009; ). miR-155: on the crosstalk between inflammation and cancer. . Int Rev Immunol 28:, 264–284. [CrossRef] [PubMed]
    [Google Scholar]
  38. Waidner L. A. , Morgan R. W. , Anderson A. S. , Bernberg E. L. , Kamboj S. , Garcia M. , Riblet S. M. , Ouyang M. , Isaacs G. K. . & other authors ( 2009; ). MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. . Virology 388:, 128–136. [CrossRef] [PubMed]
    [Google Scholar]
  39. Witter R. L. , Schat K. . ( 2003; ). Marek’s disease. . In Diseases of Poultry, pp. 407–464. Edited by Saif Y. M. . . Ames:: Iowa State University Press;.
    [Google Scholar]
  40. Xu S. , Xue C. , Li J. , Bi Y. , Cao Y. . ( 2011; ). Marek’s disease virus type 1 microRNA miR-M3 suppresses cisplatin-induced apoptosis by targeting Smad2 of the transforming growth factor beta signal pathway. . J Virol 85:, 276–285. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yao Y. , Zhao Y. , Xu H. , Smith L. P. , Lawrie C. H. , Sewer A. , Zavolan M. , Nair V. . ( 2007; ). Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. . J Virol 81:, 7164–7170. [CrossRef] [PubMed]
    [Google Scholar]
  42. Yao Y. , Zhao Y. , Xu H. , Smith L. P. , Lawrie C. H. , Watson M. , Nair V. . ( 2008; ). MicroRNA profile of Marek’s disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. . J Virol 82:, 4007–4015. [CrossRef] [PubMed]
    [Google Scholar]
  43. Yao Y. , Zhao Y. , Smith L. P. , Watson M. , Nair V. . ( 2009; ). Novel microRNAs (miRNAs) encoded by herpesvirus of turkeys: evidence of miRNA evolution by duplication. . J Virol 83:, 6969–6973. [CrossRef] [PubMed]
    [Google Scholar]
  44. Yu Z. H. , Teng M. , Sun A. J. , Yu L. L. , Hu B. , Qu L. H. , Ding K. , Cheng X. C. , Liu J. X. . & other authors ( 2014; ). Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek’s disease virus. . Virology 448:, 55–64. [CrossRef] [PubMed]
    [Google Scholar]
  45. Zhao Y. , Petherbridge L. , Smith L. P. , Baigent S. , Nair V. . ( 2008; ). Self-excision of the BAC sequences from the recombinant Marek’s disease virus genome increases replication and pathogenicity. . Virol J 5:, 19. [CrossRef] [PubMed]
    [Google Scholar]
  46. Zhao Y. , Yao Y. , Xu H. , Lambeth L. , Smith L. P. , Kgosana L. , Wang X. , Nair V. . ( 2009; ). A functional microRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. . J Virol 83:, 489–492. [CrossRef] [PubMed]
    [Google Scholar]
  47. Zhao Y. , Xu H. , Yao Y. , Smith L. P. , Kgosana L. , Green J. , Petherbridge L. , Baigent S. J. , Nair V. . ( 2011; ). Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. . PLoS Pathog 7:, e1001305. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000013
Loading
/content/journal/jgv/10.1099/jgv.0.000013
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error