1887

Abstract

Mouse mammary tumour virus (MMTV) is a member of the genus , infects rodent cells and uses mouse tranferrin receptor 1 for cell entry. Several MMTV strains have been shown to productively infect, in addition to murine cells, various heterologous cell lines including those of human origin, albeit less efficiently than murine cells. Here, we analysed whether MMTV from C3H mice [MMTV(C3H)], reported previously to be incapable of infecting human cells, could productively infect human cells. Using a recently described high-titre MMTV-based vector carrying MMTV(C3H) envelope protein (Env), we successfully transduced cells of human origin. Furthermore, WT MMTV(C3H) was able to infect human cells, albeit less efficiently than mouse cells. The established infection was, however, sufficient to enable virus spread to every cell in culture. The infectivity of WT MMTV(C3H) and MMTV-based vectors carrying MMTV(C3H)Env was blocked by heat inactivation, an inhibitor of reverse transcription (3′-azido-3′-deoxythymidine) and pre-incubation with neutralizing anti-MMTV antibodies that did not neutralize vectors pseudotyped with amphotropic murine leukemia virus Env, providing evidence for an authentic, receptor-mediated and reverse transcriptase-dependent infection process. Persistently infected human Hs578T cells produced infectious virions capable of infecting naïve human breast cells in culture, the infectivity of which could also be blocked by neutralizing anti-MMTV antibodies, demonstrating that virus particles released by the persistently infected Hs578T cells were related antigenically to the virus produced from murine cells. Taken together, our results show that MMTV(C3H), like MMTV(GR) and MMTV(RIII), is able not only to infect but also to replicate in cultured human breast cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000006
2015-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/3/650.html?itemId=/content/journal/jgv/10.1099/jgv.0.000006&mimeType=html&fmt=ahah

References

  1. Abraham J., Kwong J. A., Albariño C. G., Lu J. G., Radoshitzky S. R., Salazar-Bravo J., Farzan M., Spiropoulou C. F., Choe H.. ( 2009;). Host-species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic New World clade B arenaviruses. . PLoS Pathog 5:, e1000358. [CrossRef][PubMed]
    [Google Scholar]
  2. Aisen P.. ( 2004;). Transferrin receptor 1. . Int J Biochem Cell Biol 36:, 2137–2143. [CrossRef][PubMed]
    [Google Scholar]
  3. Allison A. B., Harbison C. E., Pagan I., Stucker K. M., Kaelber J. T., Brown J. D., Ruder M. G., Keel M. K., Dubovi E. J.. & other authors ( 2012;). Role of multiple hosts in the cross-species transmission and emergence of a pandemic parvovirus. . J Virol 86:, 865–872. [CrossRef][PubMed]
    [Google Scholar]
  4. Bentvelzen P., Daams J. H., Hageman P., Calafat J.. ( 1970;). Genetic transmission of viruses that incite mammary tumor in mice. . Proc Natl Acad Sci U S A 67:, 377–384. [CrossRef][PubMed]
    [Google Scholar]
  5. Brookes S., Piaczek M., Moore R., Dixon M., Dickson C., Peters G.. ( 1986;). Insertion elements and transitions in cloned mouse mammary tumour virus DNA: further delineation of the poison sequences. . Nucleic Acids Res 14:, 8231–8245. [CrossRef][PubMed]
    [Google Scholar]
  6. Charrel R. N., de Lamballerie X.. ( 2003;). Arenaviruses other than Lassa virus. . Antiviral Res 57:, 89–100. [CrossRef][PubMed]
    [Google Scholar]
  7. Choe H., Jemielity S., Abraham J., Radoshitzky S. R., Farzan M.. ( 2011;). Transferrin receptor 1 in the zoonosis and pathogenesis of New World hemorrhagic fever arenaviruses. . Curr Opin Microbiol 14:, 476–482. [CrossRef][PubMed]
    [Google Scholar]
  8. Cosset F. L., Takeuchi Y., Battini J. L., Weiss R. A., Collins M. K.. ( 1995;). High-titer packaging cells producing recombinant retroviruses resistant to human serum. . J Virol 69:, 7430–7436.[PubMed]
    [Google Scholar]
  9. Crandell R. A., Fabricant C. G., Nelson-Rees W. A.. ( 1973;). Development, characterization, and viral susceptibility of a feline (Felis catus) renal cell line (CRFK). . In Vitro 9:, 176–185. [CrossRef][PubMed]
    [Google Scholar]
  10. Demogines A., Abraham J., Choe H., Farzan M., Sawyer S. L.. ( 2013;). Dual host–virus arms races shape an essential housekeeping protein. . PLoS Biol 11:, e1001571. [CrossRef][PubMed]
    [Google Scholar]
  11. Flanagan M. L., Oldenburg J., Reignier T., Holt N., Hamilton G. A., Martin V. K., Cannon P. M.. ( 2008;). New World clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. . J Virol 82:, 938–948. [CrossRef][PubMed]
    [Google Scholar]
  12. Golovkina T. V., Prescott J. A., Ross S. R.. ( 1993;). Mouse mammary tumor virus-induced tumorigenesis in sag transgenic mice: a laboratory model of natural selection. . J Virol 67:, 7690–7694.[PubMed]
    [Google Scholar]
  13. Hayward J. A., Tachedjian M., Cui J., Field H., Holmes E. C., Wang L. F., Tachedjian G.. ( 2013;). Identification of diverse full-length endogenous betaretroviruses in megabats and microbats. . Retrovirology 10:, 35. [CrossRef][PubMed]
    [Google Scholar]
  14. Held W., Waanders G. A., Shakhov A. N., Scarpellino L., Acha-Orbea H., MacDonald H. R.. ( 1993;). Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. . Cell 74:, 529–540. [CrossRef][PubMed]
    [Google Scholar]
  15. Hook L. M., Agafonova Y., Ross S. R., Turner S. J., Golovkina T. V.. ( 2000;). Genetics of mouse mammary tumor virus-induced mammary tumors: linkage of tumor induction to the gag gene. . J Virol 74:, 8876–8883. [CrossRef][PubMed]
    [Google Scholar]
  16. Howard D. K., Schlom J.. ( 1978;). Isolation of host-range variants of mouse mammary tumor viruses that efficiently infect cells in vitro. . Proc Natl Acad Sci U S A 75:, 5718–5722. [CrossRef][PubMed]
    [Google Scholar]
  17. Howard D. K., Colcher D., Teramoto Y. A., Young J. M., Schlom J.. ( 1977;). Characterization of mouse mammary tumor viruses propagated in heterologous cells. . Cancer Res 37:, 2696–2704.[PubMed]
    [Google Scholar]
  18. Hsu W. L., Lin H. Y., Chiou S. S., Chang C. C., Wang S. P., Lin K. H., Chulakasian S., Wong M. L., Chang S. C.. ( 2010;). Mouse mammary tumor virus-like nucleotide sequences in canine and feline mammary tumors. . J Clin Microbiol 48:, 4354–4362. [CrossRef][PubMed]
    [Google Scholar]
  19. Hueffer K., Parker J. S., Weichert W. S., Geisel R. E., Sgro J. Y., Parrish C. R.. ( 2003;). The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. . J Virol 77:, 1718–1726. [CrossRef][PubMed]
    [Google Scholar]
  20. Indik S., Günzburg W. H., Salmons B., Rouault F.. ( 2005a;). Mouse mammary tumor virus infects human cells. . Cancer Res 65:, 6651–6659. [CrossRef][PubMed]
    [Google Scholar]
  21. Indik S., Günzburg W. H., Salmons B., Rouault F.. ( 2005b;). A novel, mouse mammary tumor virus encoded protein with Rev-like properties. . Virology 337:, 1–6. [CrossRef][PubMed]
    [Google Scholar]
  22. Indik S., Günzburg W. H., Kulich P., Salmons B., Rouault F.. ( 2007;). Rapid spread of mouse mammary tumor virus in cultured human breast cells. . Retrovirology 4:, 73. [CrossRef][PubMed]
    [Google Scholar]
  23. Janeway C.. ( 1991;). MIs: makes a little sense. . Nature 349:, 459–461. [CrossRef][PubMed]
    [Google Scholar]
  24. Kaelber J. T., Demogines A., Harbison C. E., Allison A. B., Goodman L. B., Ortega A. N., Sawyer S. L., Parrish C. R.. ( 2012;). Evolutionary reconstructions of the transferrin receptor of Caniforms supports canine parvovirus being a re-emerged and not a novel pathogen in dogs. . PLoS Pathog 8:, e1002666. [CrossRef][PubMed]
    [Google Scholar]
  25. Konstantoulas C., Indik S.. ( 2014;). Mouse mammary tumor virus infects non-dividing cells, enters the nucleus via a TNPO3-independent pathway and integrates in a less biased fashion than other retroviruses. . Retrovirology 11:, 34. [CrossRef][PubMed]
    [Google Scholar]
  26. Kozak C., Peters G., Pauley R., Morris V., Michalides R., Dudley J., Green M., Davisson M., Prakash O.. & other authors ( 1987;). A standardized nomenclature for endogenous mouse mammary tumor viruses. . J Virol 61:, 1651–1654.[PubMed]
    [Google Scholar]
  27. Lasfargues E. Y., Coutinho W. G., Dion A. S.. ( 1979;). A human breast tumor cell line (BT-474) that supports mouse mammary tumor virus replication. . In Vitro 15:, 723–729. [CrossRef][PubMed]
    [Google Scholar]
  28. Marrack P., Kushnir E., Kappler J.. ( 1991;). A maternally inherited superantigen encoded by a mammary tumour virus. . Nature 349:, 524–526. [CrossRef][PubMed]
    [Google Scholar]
  29. Müllner M., Salmons B., Günzburg W. H., Indik S.. ( 2008;). Identification of the Rem-responsive element of mouse mammary tumor virus. . Nucleic Acids Res 36:, 6284–6294. [CrossRef][PubMed]
    [Google Scholar]
  30. Owens R. B., Hackett A. J.. ( 1972;). Tissue culture studies of mouse mammary tumor cells and associated viruses. . J Natl Cancer Inst 49:, 1321–1332.[PubMed]
    [Google Scholar]
  31. Parker J. S., Murphy W. J., Wang D., O’Brien S. J., Parrish C. R.. ( 2001;). Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. . J Virol 75:, 3896–3902. [CrossRef][PubMed]
    [Google Scholar]
  32. Radoshitzky S. R., Kuhn J. H., Spiropoulou C. F., Albariño C. G., Nguyen D. P., Salazar-Bravo J., Dorfman T., Lee A. S., Wang E.. & other authors ( 2008;). Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. . Proc Natl Acad Sci U S A 105:, 2664–2669. [CrossRef][PubMed]
    [Google Scholar]
  33. Ringold G., Lasfargues E. Y., Bishop J. M., Varmus H. E.. ( 1975;). Production of mouse mammary tumor virus by cultured cells in the absence and presence of hormones: assay by molecular hybridization. . Virology 65:, 135–147. [CrossRef][PubMed]
    [Google Scholar]
  34. Ross S. R., Schofield J. J., Farr C. J., Bucan M.. ( 2002;). Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. . Proc Natl Acad Sci U S A 99:, 12386–12390. [CrossRef][PubMed]
    [Google Scholar]
  35. Sena-Esteves M., Tebbets J. C., Steffens S., Crombleholme T., Flake A. W.. ( 2004;). Optimized large-scale production of high titer lentivirus vector pseudotypes. . J Virol Methods 122:, 131–139. [CrossRef][PubMed]
    [Google Scholar]
  36. Wang E., Albritton L., Ross S. R.. ( 2006;). Identification of the segments of the mouse transferrin receptor 1 required for mouse mammary tumor virus infection. . J Biol Chem 281:, 10243–10249. [CrossRef][PubMed]
    [Google Scholar]
  37. Wang E., Obeng-Adjei N., Ying Q., Meertens L., Dragic T., Davey R. A., Ross S. R.. ( 2008;). Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells. . Virology 381:, 230–240. [CrossRef][PubMed]
    [Google Scholar]
  38. Zapata J. C., Salvato M. S.. ( 2013;). Arenavirus variations due to host-specific adaptation. . Viruses 5:, 241–278. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000006
Loading
/content/journal/jgv/10.1099/jgv.0.000006
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error