1887

Abstract

Processing of the polyprotein encoded by (PVA; genus ) was studied using expression of the complete PVA polyprotein or its mutants from recombinant baculoviruses in insect cells. The time-course of polyprotein processing by the main viral proteinase (NIaPro) was examined with the pulse–chase method. The sites at the P3/6K1, CI-6K2 and VPg/NIaPro junctions were processed slowly, in contrast to other proteolytic cleavage sites which were processed at a high rate. The CI-6K2 polyprotein was observed in the baculovirus system and in infected plant cells. In both cell types the majority of CI-6K2 was found in the membrane fraction, in contrast to fully processed CI. Deletion of the genomic region encoding the 6K1 protein prevented proper proteolytic separation of P3 from CI, but did not affect processing of VPg, NIaPro, NIb or CP from the polyprotein. The 6K2-encoding sequence could be removed without any detectable effect on polyprotein processing. However, deletion of either the 6K1 or 6K2 protein-encoding regions rendered PVA non-infectious. Mutations at the 6K2/VPg cleavage site reduced virus infectivity in plants, but had a less pronounced, albeit detectable, effect on proteolytic processing in the baculovirus system. The results of this study indicate that NIaPro catalyses proteolytic cleavages preferentially , and that the 6K1/CI and NIb/CP sites can also be processed . Both 6K peptides are indispensable for virus replication, and proteolytic separation of the 6K2 protein from the adjacent proteins by NIaPro is important for the rate of virus replication and movement.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-5-1211
2002-05-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/5/0831211a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-5-1211&mimeType=html&fmt=ahah

References

  1. Andrejeva J., Puurand Ü., Merits A., Rabenstein F., Järvekülg L., Valkonen J. P. T. 1999; Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus–host interaction and the same CP motifs affects virus transmissions and accumulation. Journal of General Virology 80:1133–1139
    [Google Scholar]
  2. Browning I. A., Burns R., George E. L., Darling M. 1995; Development and evaluation of ELISA assays incorporating monoclonal antibodies for detection of potato A potyvirus. EPPO Bulletin 25:259–268
    [Google Scholar]
  3. Carrington J. C., Dougherty W. G. 1987a; Small nuclear inclusion protein encoded by plant potyvirus genome is a protease. Journal of Virology 61:2540–2548
    [Google Scholar]
  4. Carrington J. C., Dougherty W. G. 1987b; Processing of the tobacco etch virus 49K proteinase requires autoproteolysis. Virology 160:355–362
    [Google Scholar]
  5. Carrington J. C., Cary S. M., Dougherty W. G. 1988; Mutational analysis of tobacco etch virus polyprotein processing: cis and trans proteolytic activities of polyproteins containing the 49-kilodalton proteinase. Journal of Virology 62:2313–2320
    [Google Scholar]
  6. Carrington J. C., Cary S. M., Parks T. D., Dougherty W. G. 1989; A second proteinase encoded by a plant potyvirus genome. EMBO Journal 8:365–370
    [Google Scholar]
  7. Carrington J. C., Haldeman R., Dolja V. V., Restrepo-Hartwig M. A. 1993; Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo . Journal of Virology 67:6995–7000
    [Google Scholar]
  8. Carrington J. C., Jensen P. E., Schaad M. C. 1998; Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant Journal 14:393–400
    [Google Scholar]
  9. Darós J. A., Carrington J. C. 1997; RNA binding activity of NIa proteinase of tobacco etch potyvirus. Virology 237:327–336
    [Google Scholar]
  10. Darós J. A., Schaad M. C., Carrington J. C. 1999; Functional analysis of the interaction between VPg-proteinase (NIa) and RNA polymerase (NIb) of tobacco etch potyvirus, using conditional and suppressor mutants. Journal of Virology 73:8732–8740
    [Google Scholar]
  11. Fellers J., Wan J., Hong Y., Collins G. B., Hunt A. G. 1998; In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. Journal of General Virology 79:2043–2049
    [Google Scholar]
  12. Fernandez A., Lain S., García J. A. 1995; RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli . Mapping of an RNA binding domain. Nucleic Acids Research 23:327–332
    [Google Scholar]
  13. García J. A., Lain S., Cervera M. T., Riechmann J. L., Martin M. T. 1990; Mutational analysis of plum pox potyvirus polyprotein processing by the NIa protease in Escherichia coli . Journal of General Virology 71:2773–2779
    [Google Scholar]
  14. García J. A., Martin M. T., Cervera M. T., Riechmann J. L. 1992; Proteolytic processing of the plum pox potyvirus polyprotein by the NIa protease at novel cleavage site. Virology 188:697–703
    [Google Scholar]
  15. Guo D., Rajamäki M. L., Saarma M., Valkonen J. P. 2001; Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology 82:935–939
    [Google Scholar]
  16. Gutierrez-Campos R., Torres-Acosta J. A., Saucedo-Arias L. J., Gomez-Lim M. A. 1999; The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotechnology 17:1223–1226
    [Google Scholar]
  17. Hämäläinen J. H., Kekarainen T., Gebhardt C., Watanabe K. N., Valkonen J. P. T. 2000; Recessive and dominant resistance interfere with the vascular transport of Potato virus A in diploid potatoes. Molecular Plant–Microbe Interactions 13:402–412
    [Google Scholar]
  18. Heinlein M., Padgett H. S., Gens J. S., Pickard B. G., Casper S. J., Epel B. L., Beachy R. N. 1998; Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmatic reticulum and microtubules during infection. Plant Cell 10:1107–1120
    [Google Scholar]
  19. Hong Y., Hunt A. G. 1996; RNA polymerase activity catalysed by potyvirus encoded RNA-dependent-RNA-polymerase. Virology 226:146–151
    [Google Scholar]
  20. Hong Y., Levay K., Murphy J. K., Klein P. G., Shaw J. G., Hunt A. G. 1995; A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology 214:159–166
    [Google Scholar]
  21. Kim D. H., Park Y. S., Kim S. S., Lew J., Nam H. G., Choi K. Y. 1995; Expression, purification, and identification of a novel self-cleavage site of the NIa C-terminal 27 kDa protease of turnip mosaic potyvirus C5. Virology 213:517–525
    [Google Scholar]
  22. Kim D. H., Hwang D. C., Kang B. H., Lew J., Han J., Song B. D., Choi K. Y. 1996; Effects of internal cleavages and mutations in the C-terminal region of NIa proteinase of turnip mosaic potyvirus on the catalytic activity. Virology 226:183–190
    [Google Scholar]
  23. Klein P. G., Klein R. R., Rodríguez-Cerezo E., Hunt A. G., Shaw J. G. 1994; Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759–769
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  25. Lemm J. A., Rümenapf T., Strauss E. G., Strauss J. H., Rice C. M. 1994; Polypeptide requirements for assembly of functional Sindbis virus replication complex: a model for temporal regulation of minus and plus-strand RNA synthesis. EMBO Journal 13:2925–2934
    [Google Scholar]
  26. Li X. H., Valdez P., Olvera R. E., Carrington J. C. 1997; Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein–protein interactions with VPg/proteinase (NIa). Journal of Virology 71:1598–1607
    [Google Scholar]
  27. Luciano C. S., Rhoads R. E., Shaw J. G. 1987; Synthesis of potyviral RNA and proteins in tobacco mesophyll protoplasts inoculated by electroporation. Plant Science 51:295–303
    [Google Scholar]
  28. Martin M. T., Cervera M. T., García J. A., Bonay P. 1995; Properties of the active plum pox potyvirus RNA polymerase complex in defined glycerol gradient fractions. Virus Research 37:127–137
    [Google Scholar]
  29. Merits A., Guo D., Saarma M. 1998; VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence unspecific manner. Journal of General Virology 79:3123–3127
    [Google Scholar]
  30. Merits A., Guo D., Järvekülg L., Saarma M. 1999; Biochemical and genetic evidence for interactions between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263:15–22
    [Google Scholar]
  31. Murphy J. F., Rhoads R. E., Hunt A. G., Shaw J. G. 1990; The VPg of tobacco etch virus RNA is the 49 kDa proteinase or the N-terminal 24 kDa part of the proteinase. Virology 178:285–288
    [Google Scholar]
  32. Murphy J. F., Klein P. G., Hunt A. G., Shaw J. G. 1996; Replacement of the tyrosine residue that links a potyviral VPg to the viral RNA is lethal. Virology 220:535–538
    [Google Scholar]
  33. Oruetxebarria I., Guo D., Merits A., Mäkinen K., Saarma M., Valkonen J. P. T. 2001; Identification of the genome-linked protein in virions of potato virus A, with comparison to other members in genus Potyvirus. Virus Research. 73103–112
  34. Osman T. A., Buck K. W. 1996; Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase. Journal of Virology 70:6227–6234
    [Google Scholar]
  35. Parks T. D., Howard E. D., Wolpert T. J., Arp D. J., Dougherty W. G. 1995; Expression and purification of a recombinant tobacco etch virus NIa proteinase: biochemical analysis of the full-length and a naturally occurring truncated proteinase form. Virology 210:194–201
    [Google Scholar]
  36. Peränen J., Takkinen K., Kalkkinen N., Kääriäinen L. 1988; Semliki Forest virus-specific non-structural protein nsP3 is a phosphoprotein. Journal of General Virology 69:2165–2178
    [Google Scholar]
  37. Puurand Ü., Mäkinen K., Paulin L., Saarma M. 1994; The nucleotide sequence of potato virus A genomic RNA and its sequence similarities with other potyviruses. Journal of General Virology 75:457–461
    [Google Scholar]
  38. Puurand Ü., Valkonen J. P. T., Mäkinen K., Rabenstein F., Saarma M. 1996; Infectious in vitro transcripts from cloned cDNA of the potato A potyvirus. Virus Research 40:135–140
    [Google Scholar]
  39. Rajamäki M. L., Valkonen J. P. T. 1999; The 6K2 protein and the VPg of Potato virus A are determinants of systemic infection in Nicandra physaloides . Molecular Plant–Microbe Interactions 12:1074–1081
    [Google Scholar]
  40. Rajamäki M., Merits A., Rabenstein F., Andrejeva J., Paulin L., Kekarainen T., Kreuze J. F., Forster R. L. S., Valkonen J. P. T. 1998; Biological, serological, and molecular differences among isolates of potato A potyvirus. Phytopathology 88:311–321
    [Google Scholar]
  41. Reichel C., Beachy R. N. 1998; Tobacco mosaic virus infection induces severe morphological changes of endoplasmatic reticulum. Proceedings of the National Academy of Sciences, USA 95:11169–11174
    [Google Scholar]
  42. Restrepo-Hartwig M. A., Carrington J. C. 1994; The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in virus replication. Journal of Virology 68:2388–2397
    [Google Scholar]
  43. Riechmann J. L., Lain S., García J. A. 1992; Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73:1–16
    [Google Scholar]
  44. Riechmann J. L., Cervera M. T., García J. A. 1995; Processing of the plum pox virus polyprotein at the P3-6K1 junction is not required for virus viability. Journal of General Virology 76:951–956
    [Google Scholar]
  45. Roberts I. M., Wang D., Findlay K., Maule A. J. 1998; Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cis) shows that CI protein acts transiently in aiding virus movement. Virology 245:173–181
    [Google Scholar]
  46. Rodríguez-Cerezo E., Shaw J. G. 1991; Two newly detected non-structural proteins in potyvirus-infected cells. Virology 185:572–579
    [Google Scholar]
  47. Schaad M. C., Haldeman-Cahill R., Cronin S., Carrington J. C. 1996; Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. Journal of Virology 70:7039–7048
    [Google Scholar]
  48. Schaad M. C., Jensen P. E., Carrington J. C. 1997; Formation of plant RNA virus replication complexes on membranes: role of an endoplasmatic reticulum-targeted viral protein. EMBO Journal 16:4049–4059
    [Google Scholar]
  49. Shirako Y., Strauss J. H. 1994; Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP2 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. Journal of Virology 68:1874–1885
    [Google Scholar]
  50. Thornbury D. W., van den Heuvel J. F., Lesnaw J. A., Pirone T. P. 1993; Expression of potyvirus proteins in insect cells infected with recombinant baculovirus. Journal of General Virology 74:2731–2735
    [Google Scholar]
  51. Verchot J., Koonin E. V., Carrington J. C. 1991; The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185:527–535
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-83-5-1211
Loading
/content/journal/jgv/10.1099/0022-1317-83-5-1211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error