1887

Abstract

A helper-dependent expression system based on transmissible gastroenteritis coronavirus (TGEV) has been developed using a minigenome of 3·9 kb (M39). Expression of the reporter gene β-glucuronidase (GUS) (2–8 μg per 10 cells) and the porcine respiratory and reproductive syndrome virus (PRRSV) ORF5 (1–2 μg per 10 cells) has been shown using a TGEV-derived minigenome. GUS expression levels increased about eightfold with the m.o.i. and were maintained for more than eight passages in cell culture. Nevertheless, instability of the GUS and ORF5 subgenomic mRNAs was observed from passages five and four, respectively. About a quarter of the cells in culture expressing the helper virus also produced the reporter gene as determined by studying GUS mRNA production by hybridization or immunodetection to visualize the protein synthesized. Expression of GUS was detected in the lungs, but not in the gut, of swine immunized with the virus vector. Around a quarter of lung cells showing replication of the helper virus were also positive for the reporter gene. Interestingly, strong humoral immune responses to both GUS and PRRSV ORF5 were induced in swine with this virus vector. The large cloning capacity and the tissue specificity of the TGEV-derived minigenomes suggest that these virus vectors are very promising for vaccine development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-567
2002-03-01
2020-10-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830567a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-567&mimeType=html&fmt=ahah

References

  1. Agapov E. V., Frolov I., Lindenbach B. D., Pragai B. M., Schlesinger S., Rice C. M.. 1998; Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proceeding of the National Academy of Sciences, USA95:12989–12994
    [Google Scholar]
  2. Almazán F., González J. M., Pénzes Z., Izeta A., Calvo E., Plana-Durán J., Enjuanes L.. 2000; Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proceeding of the National Academy of Sciences, USA97:5516–5521
    [Google Scholar]
  3. Alonso S., Izeta A., Sola I., Enjuanes L.. 2002; Transcription regulatory sequences and mRNA expression levels in transmissible gastroenteritis coronavirus. Journal of Virology76:1293–1308
    [Google Scholar]
  4. Ausubel F. M.. 1987; Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  5. Ballesteros M. L., Sánchez C. M., Enjuanes L.. 1997; Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology227:378–388
    [Google Scholar]
  6. Boyer J. C., Bebenek K., Kunkel T. A.. 1992; Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates. Proceeding of the National Academy of Sciences, USA89:6919–6923
    [Google Scholar]
  7. Bronstein I., Fortin J. J., Voyta J. C., Juo R.-R., Edwards B., Olenses C. E. M., Lijam N., Kricka L. J.. 1994; Chemiluminescent reporter gene assays: sensitive detection of the GUS and SEAP gene products. BioTechniques17:172–177
    [Google Scholar]
  8. Caul E. O., Egglestone S. I.. 1982; Coronavirus in humans. In Virus Infections of the Gastrointestinal Tract pp179–193 Edited by Tyrrell D. A. J., Kapikian A. Z.. New York: Marcel Dekker;
    [Google Scholar]
  9. Correa I., Jiménez G., Suñé C., Bullido M. J., Enjuanes E.. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Research10:77–94
    [Google Scholar]
  10. de Mercoyrol L., Corda Y., Job C., Job D.. 1992; Accuracy of wheat-germ RNA polymerase II. General enzymatic properties and effect of template conformational transition from right-handed B-DNA to left-handed Z-DNA. European Journal of Biochemistry206:49–58
    [Google Scholar]
  11. Denison M. R.. 1999; The common cold. Rhinoviruses and coronaviruses. In Viral Infections of the Respiratory Tract pp253–280 Edited by Dolin R., Wright P. F.. New York: Marcel Dekker;
    [Google Scholar]
  12. Dubensky T. W., Driver D. A., Polo J. M., Belli B. A., Latham E. M., Ibanez C. E., Chada S., Brumm D., Banks T. A., Mento S. J., Jolly D. J., Chang S. M. W.. 1996; Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. Journal of Virology70:508–519
    [Google Scholar]
  13. Enjuanes L., Van der Zeijst B. A. M.. 1995; Molecular basis of transmissible gastroenteritis coronavirus epidemiology. In In The Coronaviridae pp337–376 Edited by Siddell S. G.. New York: Plenum Press;
    [Google Scholar]
  14. Enjuanes L., Brian D., Cavanagh D., Holmes K., Lai M. M. C., Laude H., Masters P., Rottier P., Siddell S. G., Spaan W. J. M., Taguchi F., Talbot P.. 2000a; Coronaviridae . In Virus Taxonomy. Classification and Nomenclature of Viruses pp835–849 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carsten E. B., Estes M. K., Lemon S. M., McGeoch D. J., Maniloff J., Mayo M. A., Pringle C. R., Wickner R. B.. New York: Academic Press;
    [Google Scholar]
  15. Enjuanes L., Spaan W., Snijder E., Cavanagh D.. 2000b; Nidovirales. In In Virus taxonomy. Classification and Nomenclature of Viruses pp827–834 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carsten E. B., Estes M. K., Lemon S. M., McGeoch D. J., Maniloff J., Mayo M. A., Pringle C. R., Wickner R. B.. New York: Academic Press;
    [Google Scholar]
  16. Enjuanes L., Sola I., Almazán F., Ortego J., Izeta A., González J. M., Alonso S., Sánchez-Morgado J. M., Escors D., Calvo E., Riquelme C., Sánchez C. M.. 2001; Coronavirus derived expression systems. Journal of Biotechnology88:183–204
    [Google Scholar]
  17. Harlow E., Lane D.. 1988; Antibodies: A Laboratory Manual pp726 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Izeta A., Smerdou C., Alonso S., Penzes Z., Méndez A., Plana-Durán J., Enjuanes L.. 1999; Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. Journal of Virology73:1535–1545
    [Google Scholar]
  19. Jefferson R. A., Burgess S. M., Hirsh D.. 1986; β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proceeding of the National Academy of Sciences, USA83:8447–8451
    [Google Scholar]
  20. Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L.. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. Journal of Virology60:131–139
    [Google Scholar]
  21. Kozak M.. 1991a; An analysis of vertebrate mRNA sequences: intimations of translational control. Journal of Cell Biology115:887–903
    [Google Scholar]
  22. Kozak M.. 1991b; Structural features in eukaryotic mRNAs that modulate the initiation of translation. Journal of Biological Chemistry266:19867–19870
    [Google Scholar]
  23. Krishnan R., Chang R. Y., Brian D. A.. 1996; Tandem placement of a coronavirus promoter results in enhanced mRNA synthesis from the downstream-most initiation site. Virology218:400–405
    [Google Scholar]
  24. Kuo L., Godeke G.-J., Raamsman M. J. B., Masters P. S., Rottier P. J. M.. 2000; Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. Journal of Virology74:1393–1406
    [Google Scholar]
  25. Lai M. M. C., Cavanagh D.. 1997; The molecular biology of coronaviruses. Advances in Virus Research48:1–100
    [Google Scholar]
  26. Leparc-Goffart I., Hingley S. T., Chua M. M., Phillips J., Lavi E., Weiss S. R.. 1998; Targeted recombination within the spike gene of murine coronavirus mouse hepatitis virus A59: Q159 is a determinant of hepatotropism. Journal of Virology72:9628–9636
    [Google Scholar]
  27. Liao C. L., Zhang X., Lai M. M. C.. 1995; Coronavirus defective-interfering RNA as an expression vector: the generation of a pseudorecombinant mouse hepatitis virus expressing hemagglutinin–esterase. Virology208:319–327
    [Google Scholar]
  28. Lin Y. J., Lai M. M. C.. 1993; Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontinuous sequence for replication. Journal of Virology67:6110–6118
    [Google Scholar]
  29. McClurkin A. W., Norman J. O.. 1966; Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Canadian Journal of Comparative Medicine and Veterinary Science30:190–198
    [Google Scholar]
  30. Masters P. S.. 1999; Reverse genetics of the largest RNA viruses. Advances in Virus Research53:245–264
    [Google Scholar]
  31. Meulenberg J. J. M., den Besten A. P., de Kluyver E. P., Moormann R. J. M., Schaaper W. M. M., Wensvoort G.. 1995; Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology206:155–163
    [Google Scholar]
  32. Meulenberg J. J. M., Bos-de-Ruijter J. N. A., Wenswoort G., Moormann R. J. M.. 1998; An infectious cDNA clone of porcine reproductive and respiratory syndrome virus. Advances in Experimental Medicine and Biology440:199–206
    [Google Scholar]
  33. Penzes Z., González J. M., Izeta A., Muntion M., Enjuanes L.. 1998; Progress towards the construction of a transmissible gastroenteritis coronavirus self-replicating RNA using a two-layer expression system. Advances in Experimental Medicine and Biology440:319–327
    [Google Scholar]
  34. Penzes Z., González J. M., Calvo E., Izeta A., Smerdou C., Mendez A., Sánchez C. M., Sola I., Almazán F., Enjuanes L.. 2001; Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster. Virus Genes23:105–118
    [Google Scholar]
  35. Pirzadeh B., Dea S.. 1998; Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. Journal of General Virology79:989–999
    [Google Scholar]
  36. Plana-Durán J., Vayreda M., Vilarrasa M., Bastons J., Rosell M., Martínez R., SanGabriel M. A., Pujols A., Badiola J., Ramos J. L., Domingo M.. 1992; Porcine epidemic abortion and respiratory syndrome (mystery swine disease). Isolation in Spain of the causative agent and experimental reproduction of the disease. Veterinary Microbiology33:203–211
    [Google Scholar]
  37. Plana-Durán J., Bastons M., Urniza A., Vayreda M., Vila X., Mañe H.. 1997a; Efficacy of an inactivated vaccine for prevention of reproductive failure induced by porcine reproductive and respiratory syndrome virus. Veterinary Microbiology55:361–370
    [Google Scholar]
  38. Plana-Durán J., Climent I., Sarraseca J., Urniza A., Cortes E., Vela C., Casal J. I.. 1997b; Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 protein in protection. Virus Genes14:19–29
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sánchez C. M., Jiménez G., Laviada M. D., Correa I., Suñé C., Bullido M. J., Gebauer F., Smerdou C., Callebaut P., Escribano J. M., Enjuanes L.. 1990; Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology174:410–417
    [Google Scholar]
  41. Sánchez C. M., Gebauer F., Suñé C., Méndez A., Dopazo J., Enjuanes L.. 1992; Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology190:92–105
    [Google Scholar]
  42. Sánchez C. M., Izeta A., Sánchez-Morgado J. M., Alonso S., Sola I., Balasch M., Plana-Durán J., Enjuanes L.. 1999; Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. Journal of Virology73:7607–7618
    [Google Scholar]
  43. Schlaman H. R. M., Risseeuw E., Franke-van Dijk M. E. I., Hooykaas P. J. J.. 1994; Nucleotide sequence corrections of the uidA open reading frame encoding β-glucuronidase. Gene138:259–260
    [Google Scholar]
  44. Siddell S. G.. 1995; The Coronaviridae . In The Viruses pp418 Edited by Fraenkel-Conrat H., Wagner R. R.. New York: Plenum Press;
    [Google Scholar]
  45. Sooknanan R., Howes M., Read L., Malek L. T.. 1994; Fidelity of nucleic acid amplification with avian myeloblastosis virus reverse transcriptase and T7 RNA polymerase. BioTechniques17:1077–1085
    [Google Scholar]
  46. Stirrups K., Shaw K., Evans S., Dalton K., Casais R., Cavanagh D., Britton P.. 2000; Expression of reporter genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus. Journal of General Virology81:1687–1698
    [Google Scholar]
  47. Thiel V., Siddell S. G., Herold J.. 1998; Replication and transcription of HCV 229E replicons. Advances in Experimental Medicine and Biology440:109–114
    [Google Scholar]
  48. Thiel V., Herold J., Schelle B., Siddell S. G.. 2001; Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. Journal of General Virology82:1273–1281
    [Google Scholar]
  49. Thomas M. J., Platas A. A., Hawley D. K.. 1998; Transcriptional fidelity and proofreading by RNA polymerase II. Cell93:627–637
    [Google Scholar]
  50. Torres J. M., Sánchez C. M., Suñé C., Smerdou C., Prevec L., Graham F., Enjuanes L.. 1995; Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein. Virology213:503–516
    [Google Scholar]
  51. Ward C. D., Stokes M. A. M., Flanagan J. B.. 1988; Direct measurement of the poliovirus RNA polymerase error frequency in vitro. Journal of Virology62:558–562
    [Google Scholar]
  52. Yount B., Curtis K. M., Baric R. S.. 2000; Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model. Journal of Virology74:10600–10611
    [Google Scholar]
  53. Zhang X., Hinton D. R., Cua D. J., Stohlman S. A., Lai M. M. C.. 1997; Expression of interferon-γ by a coronavirus defective-interfering RNA vector and its effect on viral replication, spread, and pathogenicity. Virology233:327–338
    [Google Scholar]
  54. Zurbriggen A., Schmid I., Graber H. U., Vandevelde M.. 1998; Oligodendroglial pathology in canine distemper. Acta Neuropathologica95:71–77
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-3-567
Loading
/content/journal/jgv/10.1099/0022-1317-83-3-567
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error