1887

Abstract

Ovine herpesvirus-2 (OvHV-2), a member of the gammaherpesviruses (genus ), asymptomatically infects its natural host, the sheep, but causes malignant catarrhal fever (MCF) in susceptible hosts, such as cattle, deer and pigs. A permissive cell culture system for virus replication has not been identified but viral DNA is present within lymphoblastoid cell lines (LCLs) established from cases of MCF. During this study, a cDNA expression library generated from LCLs was screened with sheep sera and two cDNAs were isolated. One cDNA contained two open reading frames (ORFs) that show similarity to ORFs 58 and 59 of alcelaphine herpesvirus-1 (AlHV-1), a closely related gammaherpesvirus that also causes MCF. Both ORFs 58 and 59 are conserved throughout the gammaherpesviruses. ORF 58 is predicted to be a membrane protein, while ORF 59 has been shown to be an early lytic gene that functions as a DNA polymerase processivity factor. The second cDNA clone contained a partial ORF showing limited similarity to AlHV-1 ORF 73, a homologue of the latency-associated nuclear antigen of human herpesvirus-8, which is associated with latent infections. The full-length OvHV-2 ORF 73 was cloned subsequently by PCR. The ORFs isolated from the library were cloned into a bacterial expression vector and the recombinant proteins tested for their reactivity to sera from OvHV-2-infected animals. An ORF 59 fusion protein was recognized specifically by sera from OvHV-2-infected cattle and will be used to develop a sero-diagnostic test.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-533
2002-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830533a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-533&mimeType=html&fmt=ahah

References

  1. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. ( 1999; ). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641-644.[CrossRef]
    [Google Scholar]
  2. Baxter, S. I. F., Pow, I., Bridgen, A. & Reid, H. W. ( 1993; ). PCR detection of the sheep-associated agent of malignant catarrhal fever. Archives of Virology 132, 145-159.[CrossRef]
    [Google Scholar]
  3. Baxter, S. I., Wiyono, A., Pow, I. & Reid, H. W. ( 1997; ). Identification of ovine herpesvirus-2 infection in sheep. Archives of Virology 142, 823-831.[CrossRef]
    [Google Scholar]
  4. Bridgen, A. & Reid, H. W. ( 1991; ). Derivation of a DNA clone corresponding to the viral agent of sheep-associated malignant catarrhal fever. Research in Veterinary Science 50, 38-44.[CrossRef]
    [Google Scholar]
  5. Bridgen, A., Herring, A. J., Inglis, N. F. & Reid, H. W. ( 1989; ). Preliminary characterization of the alcelaphine herpesvirus 1 genome. Journal of General Virology 70, 1141-1150.[CrossRef]
    [Google Scholar]
  6. Chan, S. R. & Chandran, B. ( 2000; ). Characterization of human herpesvirus 8 ORF59 protein (PF-8) and mapping of the processivity and viral DNA polymerase-interacting domains. Journal of Virology 74, 10920-10929.[CrossRef]
    [Google Scholar]
  7. Chan, S. R., Bloomer, C. & Chandran, B. ( 1998; ). Identification and characterization of human herpesvirus-8 lytic cycle-associated ORF 59 protein and the encoding cDNA by monoclonal antibody. Virology 240, 118-126.[CrossRef]
    [Google Scholar]
  8. Chandran, B., Smith, M. S., Koelle, D. M., Corey, L., Horvat, R. & Goldstein, E. ( 1998; ). Reactivities of human sera with human herpesvirus-8-infected BCBL-1 cells and identification of HHV-8-specific proteins and glycoproteins and the encoding cDNAs. Virology 243, 208-217.[CrossRef]
    [Google Scholar]
  9. Chen, L. W., Lin, L. S., Chang, Y. S. & Liu, S. T. ( 1995; ). Functional analysis of EA-D of Epstein–Barr virus. Virology 211, 593-597.[CrossRef]
    [Google Scholar]
  10. Chiou, J. F., Li, J. K. & Cheng, Y. C. ( 1985; ). Demonstration of a stimulatory protein for virus-specified DNA polymerase in phorbol ester-treated Epstein–Barr virus-carrying cells. Proceedings of the National Academy of Sciences, USA 82, 5728-5731.[CrossRef]
    [Google Scholar]
  11. Cho, M. S., Milman, G. & Hayward, S. D. ( 1985; ). A second Epstein–Barr virus early antigen gene in BamHI fragment M encodes a 48- to 50-kilodalton nuclear protein. Journal of Virology 56, 860-866.
    [Google Scholar]
  12. Collery, P. & Foley, A. ( 1996; ). An outbreak of malignant catarrhal fever in cattle in the Republic of Ireland. Veterinary Record 139, 16-17.[CrossRef]
    [Google Scholar]
  13. Collins, J. K., Bruns, C., Vermedahl, T. L., Schiebel, A. L., Jessen, M. T., Schultheiss, P. C., Anderson, G. M., Dinsmore, R. P., Callan, R. J. & Demartini, J. C. ( 2000; ). Malignant catarrhal fever: polymerase chain reaction survey for ovine herpesvirus 2 and other persistent herpesvirus and retrovirus infections of dairy cattle and bison. Journal of Veterinary Diagnostic Investigation 12, 406-411.[CrossRef]
    [Google Scholar]
  14. Cotter, M. A. & Robertson, E. S. ( 1999; ). The latency-associated nuclear antigen tethers the Kaposi’s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264, 254-264.[CrossRef]
    [Google Scholar]
  15. Coulter, L. J., Wright, H. & Reid, H. W. ( 2001; ). Molecular genomic characterization of the viruses of malignant catarrhal fever. Journal of Comparative Pathology 124, 2-19.[CrossRef]
    [Google Scholar]
  16. Cuzange, A., Chroboczek, J. & Jacrot, B. ( 1994; ). The penton base of human adenovirus type 3 has the RGD motif. Gene 146, 257-259.[CrossRef]
    [Google Scholar]
  17. Denholm, L. J. & Westbury, H. A. ( 1982; ). Malignant catarrhal fever in farmed Rusa deer (Cervus timorensis). I. Clinico-pathological observations. Australian Veterinary Journal 58, 81-87.[CrossRef]
    [Google Scholar]
  18. Dingwall, C. & Laskey, R. A. ( 1991; ). Nuclear targeting sequences – a consensus? Trends in Biochemical Sciences 16, 478-481.[CrossRef]
    [Google Scholar]
  19. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A. & Ganem, D. ( 1998; ). A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. Journal of Virology 72, 8309-8315.
    [Google Scholar]
  20. Dupin, N., Fisher, C., Kellam, P., Ariad, S., Tulliez, M., Franck, N., van Marck, E., Salmon, D., Gorin, I., Escande, J. P., Weiss, R. A., Alitalo, K. & Boshoff, C. ( 1999; ). Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proceedings of the National Academy of Sciences, USA 96, 4546-4551.[CrossRef]
    [Google Scholar]
  21. Ellis, T. M. & Masters, A. M. ( 1997; ). Use of magnetic particles to improve the diagnosis of sheep-associated malignant catarrhal fever by polymerase chain reaction. Australian Veterinary Journal 75, 520-521.[CrossRef]
    [Google Scholar]
  22. Ensser, A., Pflanz, R. & Fleckenstein, B. ( 1997; ). Primary structure of the alcelaphine herpesvirus 1 genome. Journal of Virology 71, 6517-6525.
    [Google Scholar]
  23. Fixman, E. D., Hayward, G. S. & Hayward, S. D. ( 1992; ). Trans-acting requirements for replication of Epstein–Barr virus ori-Lyt. Journal of Virology 66, 5030-5039.
    [Google Scholar]
  24. Fixman, E. D., Hayward, G. S. & Hayward, S. D. ( 1995; ). Replication of Epstein–Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. Journal of Virology 69, 2998-3006.
    [Google Scholar]
  25. Friborg, J.Jr, Kong, W., Hottiger, M. O. & Nabel, G. J. ( 1999; ). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889-894.
    [Google Scholar]
  26. Gao, S. J., Kingsley, L., Hoover, D. R., Spira, T. J., Rinaldo, C. R., Saah, A., Phair, J., Detels, R., Parry, P., Chang, Y. & Moore, P. S. ( 1996a; ). Seroconversion to antibodies against Kaposi’s sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi’s sarcoma. New England Journal of Medicine 335, 233-241.[CrossRef]
    [Google Scholar]
  27. Gao, S. J., Kingsley, L., Li, M., Zheng, W., Parravicini, C., Ziegler, J., Newton, R., Rinaldo, C. R., Saah, A., Phair, J., Detels, R., Chang, Y. & Moore, P. S. ( 1996b; ). KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi’s sarcoma. Nature Medicine 2, 925-928.[CrossRef]
    [Google Scholar]
  28. Gao, S. J., Zhang, Y. J., Deng, J. H., Rabkin, C. S., Flore, O. & Jenson, H. B. ( 1999; ). Molecular polymorphism of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) latent nuclear antigen: evidence for a large repertoire of viral genotypes and dual infection with different viral genotypes. Journal of Infectious Diseases 180, 1466-1476.[CrossRef]
    [Google Scholar]
  29. Haig, D. M., McInnes, C. J., Thomson, J., Wood, A., Bunyan, K. & Mercer, A. ( 1998; ). The orf virus OV20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double-stranded RNA-dependent kinase. Immunology 93, 335-340.
    [Google Scholar]
  30. Hall, K. T., Giles, M. S., Goodwin, D. J., Calderwood, M. A., Carr, I. M., Stevenson, A. J., Markham, A. F. & Whitehouse, A. ( 2000; ). Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. Journal of Virology 74, 7331-7337.[CrossRef]
    [Google Scholar]
  31. Herring, A., Reid, H., Inglis, N. & Pow, I. ( 1989; ). Immunoblotting analysis of the reaction of wildebeest, sheep and cattle sera with the structural antigens of alcelaphine herpesvirus-1 (malignant catarrhal fever virus). Veterinary Microbiology 19, 205-215.[CrossRef]
    [Google Scholar]
  32. Heuschele, W. P., Nielsen, N. O., Oosterhuis, J. E. & Castro, A. E. ( 1985; ). Dexamethasone-induced recrudescence of malignant catarrhal fever and associated lymphosarcoma and granulomatous-disease in a Formosan sika deer (Cervus nippon taiouanus). American Journal of Veterinary Research 46, 1578-1583.
    [Google Scholar]
  33. Hussy, D., Stauber, N., Leutenegger, C. M., Rieder, S. & Ackermann, M. ( 2001; ). Quantitative fluorogenic PCR assay for measuring ovine herpesvirus 2 replication in sheep. Clinical and Diagnostic Laboratory Immunology 8, 123-128.
    [Google Scholar]
  34. Katano, H., Sata, T., Suda, T., Nakamura, T., Tachikawa, N., Nishizumi, H., Sakurada, S., Hayashi, Y., Koike, M., Iwamoto, A., Kurata, T. & Mori, S. ( 1999a; ). Expression and antigenicity of human herpesvirus 8 encoded ORF59 protein in AIDS-associated Kaposi’s sarcoma. Journal of Medical Virology 59, 346-355.[CrossRef]
    [Google Scholar]
  35. Katano, H., Sato, Y., Kurata, T., Mori, S. & Sata, T. ( 1999b; ). High expression of HHV-8-encoded ORF73 protein in spindle-shaped cells of Kaposi’s sarcoma. American Journal of Pathology 155, 47-52.[CrossRef]
    [Google Scholar]
  36. Katano, H., Iwasaki, T., Baba, N., Terai, M., Mori, S., Iwamoto, A., Kurata, T. & Sata, T. ( 2000; ). Identification of antigenic proteins encoded by human herpesvirus 8 and seroprevalence in the general population and among patients with and without Kaposi’s sarcoma. Journal of Virology 74, 3478-3485.[CrossRef]
    [Google Scholar]
  37. Kedes, D. H., Operskalski, E., Busch, M., Kohn, R., Flood, J. & Ganem, D. ( 1996; ). The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nature Medicine 2, 918-924.[CrossRef]
    [Google Scholar]
  38. Kedes, D. H., Lagunoff, M., Renne, R. & Ganem, D. ( 1997; ). Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi’s sarcoma-associated herpesvirus. Journal of Clinical Investigation 100, 2606-2610.[CrossRef]
    [Google Scholar]
  39. Kellam, P., Boshoff, C., Whitby, D., Matthews, S., Weiss, R. A. & Talbot, S. J. ( 1997; ). Identification of a major latent nuclear antigen, LNA-1, in the human herpesvirus 8 genome. Journal of Human Virology 1, 19-29.
    [Google Scholar]
  40. Kiehl, A. & Dorsky, D. I. ( 1995; ). Bipartite DNA-binding region of the Epstein–Barr virus BMRF1 product essential for DNA polymerase accessory function. Journal of Virology 69, 1669-1677.
    [Google Scholar]
  41. Krithivas, A., Young, D. B., Liao, G., Greene, D. & Hayward, S. D. ( 2000; ). Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein–Barr virus gene expression in dually infected PEL cells. Journal of Virology 74, 9637-9645.[CrossRef]
    [Google Scholar]
  42. Leach, F. S. & Mocarski, E. S. ( 1989; ). Regulation of cytomegalovirus late-gene expression: differential use of three start sites in the transcriptional activation of ICP36 gene expression. Journal of Virology 63, 1783-1791.
    [Google Scholar]
  43. Lennette, E. T., Blackbourn, D. J. & Levy, J. A. ( 1996; ). Antibodies to human herpesvirus type 8 in the general population and in Kaposi’s sarcoma patients. Lancet 348, 858-861.[CrossRef]
    [Google Scholar]
  44. Li, J. S., Zhou, B. S., Dutschman, G. E., Grill, S. P., Tan, R. S. & Cheng, Y. C. ( 1987; ). Association of Epstein–Barr virus early antigen diffuse component and virus-specified DNA polymerase activity. Journal of Virology 61, 2947-2949.
    [Google Scholar]
  45. Li, H., Shen, D. T., O’Toole, D., Knowles, D. P., Gorham, J. R. & Crawford, T. B. ( 1995; ). Investigation of sheep-associated malignant catarrhal fever virus-infection in ruminants by PCR and competitive inhibition enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 33, 2048-2053.
    [Google Scholar]
  46. Li, H., Dyer, N., Keller, J. & Crawford, T. B. ( 2000; ). Newly recognized herpesvirus causing malignant catarrhal fever in white-tailed deer (Odocoileus virginianus). Journal of Clinical Microbiology 38, 1313-1318.
    [Google Scholar]
  47. Li, H., Keller, J., Knowles, D. P. & Crawford, T. B. ( 2001; ). Recognition of another member of the malignant catarrhal fever virus group: an endemic gammaherpesvirus in domestic goats. Journal of General Virology 82, 227-232.
    [Google Scholar]
  48. Liebermann, H., Dolling, R., Schmidt, D. & Thalmann, G. ( 1991; ). RGD-containing peptides of VP1 of foot-and-mouth disease virus (FMDV) prevent virus infection in vitro. Acta Virologica 35, 90-93.
    [Google Scholar]
  49. Lin, K., Dai, C. Y. & Ricciardi, R. P. ( 1998; ). Cloning and functional analysis of Kaposi’s sarcoma-associated herpesvirus DNA polymerase and its processivity factor. Journal of Virology 72, 6228-6232.
    [Google Scholar]
  50. Loken, T., Aleksandersen, M., Reid, H. & Pow, I. ( 1998; ). Malignant catarrhal fever caused by ovine herpesvirus-2 in pigs in Norway. Veterinary Record 143, 464-467.[CrossRef]
    [Google Scholar]
  51. Mettam, R. W. M. ( 1923; ). Snotsiekte in cattle. 9th and 10th Reports of the Director of Veterinary Education and Research, Union of South Africa 395–432.
    [Google Scholar]
  52. Michel, A. L. & Aspeling, I. A. ( 1994; ). Evidence of persistent malignant catarrhal fever infection in a cow obtained by nucleic-acid hybridization. Journal of the South African Veterinary Association 65, 26-27.
    [Google Scholar]
  53. Milne, E. M. & Reid, H. W. ( 1990; ). Recovery of a cow from malignant catarrhal fever. Veterinary Record 126, 640-641.
    [Google Scholar]
  54. Mirangi, P. K. & Kangee, F. M. ( 1997; ). Detection of ovine herpesvirus 2 in Kenyan sheep by polymerase chain reaction. Veterinary Record 141, 176-177.[CrossRef]
    [Google Scholar]
  55. Modrow, S., Hoflacher, B. & Wolf, H. ( 1992; ). Identification of a protein encoded in the EB-viral open reading frame BMRF2. Archives of Virology 127, 379-386.[CrossRef]
    [Google Scholar]
  56. Muller-Doblies, U. U., Li, H., Hauser, B., Adler, H. & Ackermann, M. ( 1998; ). Field validation of laboratory tests for clinical diagnosis of sheep-associated malignant catarrhal fever. Journal of Clinical Microbiology 36, 2970-2972.
    [Google Scholar]
  57. Nadala, E. C., Tan, T. M., Wong, H. M. & Ting, R. C. ( 1996; ). ELISA for the detection of serum and saliva IgA against the BMRFI gene product of Epstein–Barr virus. Journal of Medical Virology 50, 93-96.[CrossRef]
    [Google Scholar]
  58. Nakai, K. & Kanehisa, M. ( 1992; ). A knowledge base for predicting protein localisation sites in eukaryotic cells. Genomics 14, 897-911.[CrossRef]
    [Google Scholar]
  59. Olsen, S. J., Sarid, R., Chang, Y. & Moore, P. S. ( 2000; ). Evaluation of the latency-associated nuclear antigen (ORF73) of Kaposi’s sarcoma-associated herpesvirus by peptide mapping and bacterially expressed recombinant western blot assay. Journal of Infectious Diseases 182, 306-310.[CrossRef]
    [Google Scholar]
  60. O’Toole, D., Li, H., Miller, D., Williams, W. R. & Crawford, T. B. ( 1997; ). Chronic and recovered cases of sheep-associated malignant catarrhal fever in cattle. Veterinary Record 140, 519-524.[CrossRef]
    [Google Scholar]
  61. Pari, G. S., Kacica, M. A. & Anders, D. G. ( 1993; ). Open reading frames UL44, IRS1/TRS1, and UL36–38 are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA synthesis. Journal of Virology 67, 2575-2582.
    [Google Scholar]
  62. Parravicini, C., Chandran, B., Corbellino, M., Berti, E., Paulli, M., Moore, P. S. & Chang, Y. ( 2000; ). Differential viral protein expression in Kaposi’s sarcoma-associated herpesvirus-infected diseases: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. American Journal of Pathology 156, 743-749.[CrossRef]
    [Google Scholar]
  63. Pearson, G. R., Vroman, B., Chase, B., Sculley, T., Hummel, M. & Kieff, E. ( 1983; ). Identification of polypeptide components of the Epstein–Barr virus early antigen complex with monoclonal antibodies. Journal of Virology 47, 193-201.
    [Google Scholar]
  64. Peñaranda, M. E., Lagenaur, L. A., Pierik, L. T., Berline, J. W., MacPhail, L. A., Greenspan, D., Greenspan, J. S. & Palefsky, J. M. ( 1997; ). Expression of Epstein–Barr virus BMRF-2 and BDLF-3 genes in hairy leukoplakia. Journal of General Virology 78, 3361-3370.
    [Google Scholar]
  65. Pfitzner, A. J., Strominger, J. L. & Speck, S. H. ( 1987; ). Characterization of a cDNA clone corresponding to a transcript from the Epstein–Barr virus BamHI M fragment: evidence for overlapping mRNAs. Journal of Virology 61, 2943-2946.
    [Google Scholar]
  66. Pierson, R. E., Thake, D., McChesney, A. E. & Storz, J. ( 1973; ). An epizootic of malignant catarrhal fever in feedlot cattle. American Journal of Veterinary Research 163, 349-350.
    [Google Scholar]
  67. Plowright, W. ( 1990; ). Malignant catarrhal fever virus. In Virus Infections of Ruminants , pp. 123-150. Edited by Z. Dinter & B. Morein. New York:Elsevier.
  68. Plowright, W., Ferris, R. D. & Scott, G. R. ( 1960; ). Blue wildebeest and the aetiological agent of bovine malignant catarrhal fever. Nature 188, 1167-1169.[CrossRef]
    [Google Scholar]
  69. Radkov, S. A., Kellam, P. & Boshoff, C. ( 2000; ). The latent nuclear antigen of Kaposi’s sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nature Medicine 6, 1121-1127.[CrossRef]
    [Google Scholar]
  70. Rainbow, L., Platt, G. M., Simpson, G. R., Sarid, R., Gao, S. J., Stoiber, H., Herrington, C. S., Moore, P. S. & Schulz, T. F. ( 1997; ). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. Journal of Virology 71, 5915-5921.
    [Google Scholar]
  71. Ramachandran, S., Malole, M., Rifuliadi, D. & Safriati, T. ( 1982; ). Experimental reproduction of malignant catarrhal fever in Bali cattle (Bos sondaicus). Australian Veterinary Journal 58, 169-170.
    [Google Scholar]
  72. Reid, H. W. & Rowe, L. ( 1973; ). The attenuation of a herpesvirus (malignant catarrhal fever virus) isolated from hartebeest (Alcelaphus buselaphus cokei Gunther). Research in Veterinary Science 15, 144-146.
    [Google Scholar]
  73. Reid, H. W. & Bridgen, A. ( 1991; ). Recovery of a herpesvirus from a roan antelope (Hippotragus equinus). Veterinary Microbiology 28, 269-278.[CrossRef]
    [Google Scholar]
  74. Reid, H. W., Buxton, D., Corrigall, W., Hunter, A. R., McMartin, D. A. & Rushton, R. ( 1979; ). An outbreak of malignant catarrhal fever in red deer (Cervus elephus). Veterinary Record 104, 120-123.[CrossRef]
    [Google Scholar]
  75. Reid, H. W., Buxton, D., Pow, I., Finlayson, J. & Berrie, E. L. ( 1983; ). A cyto-toxic lymphocyte-T line propagated from a rabbit infected with sheep-associated malignant catarrhal fever. Research in Veterinary Science 34, 109-113.
    [Google Scholar]
  76. Reid, H. W., Buxton, D., Mckelvey, W. A. C., Milne, J. A. & Appleyard, W. T. ( 1987; ). Malignant catarrhal fever in Père-Davids deer. Veterinary Record 121, 276-277.[CrossRef]
    [Google Scholar]
  77. Reid, H. W., Buxton, D., Pow, I. & Finlayson, J. ( 1989a; ). Isolation and characterization of lymphoblastoid-cells from cattle and deer affected with sheep-associated malignant catarrhal fever. Research in Veterinary Science 47, 90-96.
    [Google Scholar]
  78. Reid, H. W., Pow, I. & Buxton, D. ( 1989b; ). Antibody to alcelaphine herpesvirus-1 (AHV-1) in hamsters experimentally infected with AHV-1 and the sheep-associated agent of malignant catarrhal fever. Research in Veterinary Science 47, 383-386.
    [Google Scholar]
  79. Roivainen, M., Hyypia, T., Piirainen, L., Kalkkinen, N., Stanway, G. & Hovi, T. ( 1991; ). RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. Journal of Virology 65, 4735-4740.
    [Google Scholar]
  80. Rossiter, P. B. ( 1981; ). Antibodies to malignant catarrhal fever virus in sheep sera. Journal of Comparative Pathology 91, 303-311.[CrossRef]
    [Google Scholar]
  81. Sarid, R., Wiezorek, J. S., Moore, P. S. & Chang, Y. ( 1999; ). Characterization and cell cycle regulation of the major Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. Journal of Virology 73, 1438-1446.
    [Google Scholar]
  82. Schultheiss, P. C., Collins, J. K., Austgen, L. E. & De Martini, J. C. ( 1998; ). Malignant catarrhal fever in bison, acute and chronic cases. Journal of Veterinary Diagnostic Investigation 10, 255-262.[CrossRef]
    [Google Scholar]
  83. Schwam, D. R., Luciano, R. L., Mahajan, S. S., Wong, L. & Wilson, A. C. ( 2000; ). Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. Journal of Virology 74, 8532-8540.[CrossRef]
    [Google Scholar]
  84. Simpson, G. R., Schulz, T. F., Whitby, D., Cook, P. M., Boshoff, C., Rainbow, L., Howard, M. R., Gao, S. J., Bohenzky, R. A., Simmonds, P., Lee, C., de Ruiter, A., Hatzakis, A., Tedder, R. S., Weller, I. V., Weiss, R. A. & Moore, P. S. ( 1996; ). Prevalence of Kaposi’s sarcoma-associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet 348, 1133-1138.[CrossRef]
    [Google Scholar]
  85. Talbot, S. J., Weiss, R. A., Kellam, P. & Boshoff, C. ( 1999; ). Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257, 84-94.[CrossRef]
    [Google Scholar]
  86. Tsurumi, T. ( 1993; ). Purification and characterization of the DNA-binding activity of the Epstein–Barr virus DNA polymerase accessory protein BMRF1 gene products, as expressed in insect cells by using the baculovirus system. Journal of Virology 67, 1681-1687.
    [Google Scholar]
  87. Virgin, H. W., Presti, R. M., Li, X. Y., Liu, C. & Speck, S. H. ( 1999; ). Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. Journal of Virology 73, 2321-2332.
    [Google Scholar]
  88. Wiyono, A., Baxter, S. I. F., Saepulloh, M., Damayanti, R., Daniels, P. & Reid, H. W. ( 1994; ). PCR detection of ovine herpesvirus-2 DNA in Indonesian ruminants: normal sheep and clinical cases of malignant catarrhal fever. Veterinary Microbiology 42, 45-52.[CrossRef]
    [Google Scholar]
  89. Zhang, Q., Hong, Y., Dorsky, D., Holley-Guthrie, E., Zalani, S., Elshiekh, N. A., Kiehl, A., Le, T. & Kenney, S. ( 1996; ). Functional and physical interactions between the Epstein–Barr virus (EBV) proteins BZLF1 and BMRF1: effects on EBV transcription and lytic replication. Journal of Virology 70, 5131-5142.
    [Google Scholar]
  90. Zhang, Q., Holley-Guthrie, E., Ge, J. Q., Dorsky, D. & Kenney, S. ( 1997; ). The Epstein–Barr virus (EBV) DNA polymerase accessory protein, BMRF1, activates the essential downstream component of the EBV oriLyt. Virology 230, 22-34.[CrossRef]
    [Google Scholar]
  91. Zhang, Y.-J., Deng, J.-H., Rabkin, C. & Gao, S.-J. ( 2000; ). Hot-spot variations of Kaposi’s sarcoma-associated herpesvirus latent nuclear antigen and application in genotyping by PCR–RFLP. Journal of General Virology 81, 2049-2058.
    [Google Scholar]
  92. Zhou, Y., Chandran, B. & Wood, C. ( 1997; ). Transcriptional patterns of the pCD41 (U27) locus of human herpesvirus 6. Journal of Virology 71, 3420-3430.
    [Google Scholar]
  93. Zhu, L., Wang, R., Sweat, A., Goldstein, E., Horvat, R. & Chandran, B. ( 1999; ). Comparison of human sera reactivities in immunoblots with recombinant human herpesvirus (HHV)-8 proteins associated with the latent (ORF73) and lytic (ORFs 65, K8.1A and K8.1B) replicative cycles and in immunofluorescence assays with HHV-8-infected BCBL-1 cells. Virology 256, 381-392.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-3-533
Loading
/content/journal/jgv/10.1099/0022-1317-83-3-533
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error