1887

Abstract

The resistance of cancers to conventional therapies has inspired the search for novel strategies. One such approach, namely gene therapy, is based upon the introduction of genes such as those encoding suicide proteins, tumour suppressor proteins or cytokines into tumour cells by means of a genetic vector. The efficiency with which viruses transfer their genes from one host cell to another has led to the widespread use of viruses as genetic vectors. For safety reasons, such virus vectors are generally replication-defective but, unfortunately, this has limited the efficacy of treatment by restricting the number of cells to which the therapeutic gene is delivered. For this reason, the use of replication-competent viruses has been proposed, since virus replication would be expected to lead to amplification and spread of the therapeutic genes . The replication of many viruses results in lysis of the host cells. This inherent cytotoxicity, together with the efficiency with which viruses can spread from one cell to another, has inspired the notion that replication-competent viruses could be exploited for cancer treatment. Some viruses have been shown to replicate more efficiently in transformed cells but it is unlikely that such examples will exhibit a high enough degree of tumour selectivity, and hence safety, for the treatment of patients. Our increasing knowledge of the pathogenesis of virus disease and the ability to manipulate specific regions of viral genomes have allowed the construction of viruses that are attenuated in normal cells but retain their ability to lyse tumour cells. Such manipulations have included modifying the ability of viruses to bind to, or replicate in, particular cell types, while others have involved the construction of replication-competent viruses encoding suicide proteins or cytokines. Naturally occurring or genetically engineered oncolytic viruses based upon adenovirus, herpes simplex virus, Newcastle disease virus, poliovirus, vesicular stomatitis virus, weasles virus and reovirus have been described. The results of animal studies are encouraging and a number of viruses are now being evaluated in clinical trials.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-491
2002-03-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830491a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-491&mimeType=html&fmt=ahah

References

  1. Aghi M., Chou T. C., Suling K., Breakefield X. O., Chiocca E. A. 1999; Multimodel cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Research 59:3861–3865
    [Google Scholar]
  2. Ahlert T., Schirrmacher V. 1990; Isolation of a human melanoma adapted Newcastle disease virus mutant with highly selective replication patterns. Cancer Research 50:5962–5968
    [Google Scholar]
  3. Akkina R. K., Walton R. M., Chen M. L., Li Q.-X., Planelles V., Chen I. S. Y. 1996; High efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. Journal of Virology 70:2581–2585
    [Google Scholar]
  4. Andreansky S., He B., van Cott J., McGhee J., Markert J. M., Gillespie G. Y., Roizman B., Whitely R. J. 1998; Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Therapy 5:121–130
    [Google Scholar]
  5. Bateman A., Bullough F., Murphy S., Emiliusen L., Lavillette D., Cosset F.-L., Cattaneo R., Russell S. J., Vile R. G. 2000; Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Research 60:1492–1497
    [Google Scholar]
  6. Bates S., Vousden K. H. 1996; p53 in signaling checkpoint arrest or apoptosis. Current Opinion in Genetics and Development 6:12–18
    [Google Scholar]
  7. Bluming A. Z., Ziegler J. L. 1971; Regression of Burkitt’s lymphoma in association with measles infection. Lancet ii:105–106
    [Google Scholar]
  8. Bolovan C. A., Sawtell N. M., Thompson R. L. 1994; ICP34.5 mutants of herpes simplex virus type I strains 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. Journal of Virology 68:48–55
    [Google Scholar]
  9. Boritz E., Gerlach J., Johnson J. E., Rose J. K. 1999; Replication competent rhabdovirus with human immunodeficiency virus type I coats and green fluorescent protein: entry by a pH-independent pathway. Journal of Virology 73:6937–6945
    [Google Scholar]
  10. Boviatsis E., Scharf J., Chase M., Harrington K., Kowall N. W., Breakfield X. O., Chiocca E. A. 1994; Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Therapy 1:323–331
    [Google Scholar]
  11. Bischoff J. R., Kirn D. H., Williams A., Heise C., Horn S., Muna M., Ng L., Nye J. A., Sampson-Johannes A., Fattaey A., McCormick F. 1996; An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376
    [Google Scholar]
  12. Brunori M., Malerba M., Kashiwazaki H., Iggo R. 2001; Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. Journal of Virology 75:2857–2865
    [Google Scholar]
  13. Burns J. C., Friedmann T., Driever W., Burrascano M., Yee J.-K. 1993; Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titre and efficient gene transfer into mammalian and nonmammalian cells. Proceedings of the Society for Experimental Biology and Medicine 90:8033–8037
    [Google Scholar]
  14. Cassel W. A., Murray D. R., Phillips H. S. 1983; A phase II study on the postsurgical management of stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer 52:856–860
    [Google Scholar]
  15. Chase M., Chung R. Y., Chiocca E. A. 1998; An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nature Biotechnology 16:444–448
    [Google Scholar]
  16. Chen L., Waxman D. J. 1995; Intratumoural activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Research 55:581–589
    [Google Scholar]
  17. Chen L., Yu L. J., Waxman D. J. 1997; Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by co-expression of the P450 reductase gene. Cancer Research 57:4830–4837
    [Google Scholar]
  18. Chou J., Kern E. R., Whitely R., Roizman B. 1990; Mapping of herpes simplex virus neurovirulence to gamma 34.5, a gene nonessential for growth in culture. Science 250:1262–1266
    [Google Scholar]
  19. Clarke L., Waxman D. J. 1989; Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Cancer Research 49:2344–2350
    [Google Scholar]
  20. De Pace N. 1912; Sulla scomparsa di un enorme cancro vegetante del collo dell’utero senza cura chirurgica. Ginecologia 9:82–89
    [Google Scholar]
  21. Dmitriev I., Krasnykh V., Miller C. R., Wang M., Kashentseva E., Mikeeva G., Belousova N., Curiel D. T. 1998; An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. Journal of Virology 72:9706–9713
    [Google Scholar]
  22. Dorig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305
    [Google Scholar]
  23. Doronin K., Toth K., Kuppuswamy M., Ward P., Tollefson A. E., Wold W. S. M. 2000; Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. Journal of Virology 74:6147–6155
    [Google Scholar]
  24. Doronin K., Kuppuswamy M., Toth K., Tollefson A. E., Krajcsi P., Krougliak V., Wold W. S. M. 2001; Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. Journal of Virology 75:3314–3324
    [Google Scholar]
  25. Everett H., McFadden G. 1999; Apoptosis: an innate immune response to virus infection. Trends in Microbiology 7:160–165
    [Google Scholar]
  26. Flanagan A. D., Love R., Tesar W. 1955; Propagation of Newcastle disease virus in Ehrlich ascites cells in vitro and in vivo. Proceedings of the Society for Experimental Biology and Medicine 90:82–86
    [Google Scholar]
  27. Flint S. J., Enquist L. W., Krug R. M., Racaniello V. R., Skalka A. M. 2000 Principles of Virology: Molecular Biology, Pathogenesis and Control Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Freytag S. O., Rogulski K. R., Paielli D. L., Gilbert J. D., Kim J. H. 1998; A novel three pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Human Gene Therapy 9:1323–1333
    [Google Scholar]
  29. Fueyo J., Gomez-Manzano C., Alemany R., Lee P. S. Y., McDonnell T. J., Mitlianga P., Shi Y.-X., Levin V. A., Yung W. K. A., Kyritsis A. P. 2000; A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12
    [Google Scholar]
  30. Galanis E., Bateman A., Johnson K., Diaz R. M., James C. D., Vile R., Russell S. J. 2001; Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Human Gene Therapy 12:811–821
    [Google Scholar]
  31. Ganly I., Kirn D., Eckhardt S. 2000; A phase I study of ONYX-015, an E1B attenuated adenovirus, administered intratumourally to patients with recurrent head and neck cancer. Clinical Cancer Research 6:798–806
    [Google Scholar]
  32. Goodrum F. D., Ornelles D. A. 1998; P53 status does not determine outcome of E1b 55-kilodalton mutant adenovirus lytic infection. Journal of Virology 72:9479–9490
    [Google Scholar]
  33. Gromeier M., Lachmann S., Rosenfield M. R., Gutin P. H., Wimmer E. 2000; Intergenic poliovirus recombinants for the treatment of malignant glioma. Proceedings of the National Academy of Sciences, USA 97:6803–6808
    [Google Scholar]
  34. Grote D., Russell S. J., Corni T. I., Cattaneo R., Vile R., Poland G. A., Fielding A. K. 2001; Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 97:3746–3754
    [Google Scholar]
  35. Gu D.-L., Gonzalez A. M., Printz M. A., Doukas J., Ying W., D’Andrea M., Hoganson D. K., Curiel D. T., Douglas J. T., Sosnowski B. A., Baird A., Aukerman S. L., Pierce G. F. 1999; Fibroblast growth factor 2 retargeted adenovirus vector has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Research 59:2608–2624
    [Google Scholar]
  36. Hallenbeck P. L., Chang Y.-N., Hay C., Golightly D., Stewart D., Lin J., Phipps S., Chiang Y. L. 1999; A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Human Gene Therapy 10:1721–1733
    [Google Scholar]
  37. Hammon W. McD., Yohn D. S., Casto B. C., Aitchison R. W. 1963; Oncolytic potentials of nonhuman viruses for human cancer: effects of twenty-four viruses on human cancer cell lines. Journal of the National Cancer Institute 31:329–345
    [Google Scholar]
  38. Hammond A. L., Plemper R. K., Zhang J., Schneider U., Russell S. J., Cattaneo R. 2001; Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. Journal of Virology 75:2087–2096
    [Google Scholar]
  39. Harada J. N., Berk A. J. 1999; P53-independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. Journal of Virology 73:5333–5344
    [Google Scholar]
  40. Hashiro G., Loh P. C., Yau J. T. 1977; The preferential cytotoxicity for reovirus for certain transformed cell lines. Archives of Virology 54:307–315
    [Google Scholar]
  41. Havenga M. J., Lemckert A. A., Grimbergen J. M., Vogels R., Huisman L. G., Valerio D., Bout A., Quax P. H. 2001; Improved adenovirus vectors for infection of cardiovascular tissues. Journal of Virology 75:3335–3342
    [Google Scholar]
  42. Heise C., Kirn D. H. 2000; Replication-selective adenoviruses as oncolytic agents. Journal of Clinical Investigation 105:847–851
    [Google Scholar]
  43. Heise C., Sampson-Johannes A., Williams A., McCormick F., Von Hoff D. D., Kirn D. H. 1997; Onyx-015, an E1B-attenuated adenovirus causes tumor-specific lysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Medicine 3:639–645
    [Google Scholar]
  44. Heise C., Hermiston T., Johnson L., Brooks G., Sampson-Johannes A., Williams A., Hawkins L., Kirn D. 2000; An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature Medicine 6:1134–1139
    [Google Scholar]
  45. Herold B. C., Visalli R. J., Sumarski N., Brandt C. R., Spear P. G. 1994; Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulfate and glycoprotein B. Journal of General Virology 75:1211–1222
    [Google Scholar]
  46. Hutchin M. E., Pickles R. J., Yarborough W. G. 2000; Efficiency of adenovirus-mediated gene transfer to oropharyngeal epithelial cells correlates with cellular differentiation and human coxsackie and adenovirus receptor expression. Human Gene Therapy 11:2365–2375
    [Google Scholar]
  47. Jia W. W., McDermott M., Goldie J., Cynader M., Tan J., Tufaro F. 1994; Selective destruction of gliomas in immunocompetent rats by thymidine kinase-defective herpes simplex virus type I. Journal of the National Cancer Institute 86:1209–1215
    [Google Scholar]
  48. Johnson J. E., Schnell M. J., Buonocore L., Rose J. K. 1997; Specific targeting to CD4+ cells of recombinant vesicular stomatitis viruses encoding human immunodeficiency virus envelope proteins. Journal of Virology 71:5060–5068
    [Google Scholar]
  49. Kahn J. S., Schnell M. J., Buonocore L., Rose J. K. 1999; Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and fusion. Virology 254:81–91
    [Google Scholar]
  50. Kasono K., Blackwell J. L., Douglas J. T., Dmitriev I., Strong T. V., Reynolds P., Kropf D. A., Carroll W. R., Peters G. E., Bucy R. P., Curiel D. T., Krasnykh V. 1999; Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clinical Cancer Research 5:2571–2579
    [Google Scholar]
  51. Khuri F. R., Nemunaitis J., Ganly I., Arseneau J., Tannock I. F., Romel L., Gore M., Ironside J., MacDougall R. H., Heise C., Randlev B., Gillenwater A. M., Bruso P., Kaye S. B., Hong W. K., Kirn D. H. 2000; A controlled trial of intratumoral ONYX-015, a selectively replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Medicine 6:879–885
    [Google Scholar]
  52. Kirn D., Nemunaitis J., Ganly I., Posner M., Vokes E., Kuhn J., Heise C., Maack C., Kaye S. 1998; A phase II trial of intratumoural injection with an E1B-deleted adenovirus, ONYX-015, in patients with recurrent, refractory head and neck cancer. Proceedings of the American Society of Clinical Oncology 17:391
    [Google Scholar]
  53. Kirn D., Martuza R. L., Zwiebel J. 2001; Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nature Medicine 7:781–787
    [Google Scholar]
  54. Kramm C. M., Chase H., Herlinger U., Jacobs A., Pechan P. A., Rainov N. G., Sena-Esteves M., Aghi M., Barnett F. H., Chiocca E. A., Breakefield X. O. 1997; Therapeutic efficacy and safety of a second generation replication-conditional HSV-I vector for brain tumor gene therapy. Human Gene Therapy 8:2057–2068
    [Google Scholar]
  55. Kurihara T., Brough D. E., Kovesdi I., Kufe D. W. 2000; Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. Journal of Clinical Investigation 106:763–771
    [Google Scholar]
  56. Laquerre S., Anderson D. B., Stoltz D. B., Glorioso J. C. 1998; Recombinant herpes simplex virus type I engineered for targeted binding to erythropoietin receptor-bearing cells. Journal of Virology 72:9683–9697
    [Google Scholar]
  57. Levine A. J. 1996; The origins of virology. In Fields Virology pp 1–14 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  58. Lindblom A., Liljegren A. 2000; Tumour markers in malignancies. British Medical Journal 320:424–427
    [Google Scholar]
  59. MacLean A. R., Ul-Fareed M., Robertson L., Harland J., Brown S. M. 1991; Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. Journal of General Virology 72:631–639
    [Google Scholar]
  60. Marbert J. M., Malick A., Coen D. M., Martuza R. L. 1993; Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 35:597–603
    [Google Scholar]
  61. Martínez-Salas E., Ramos R., Lafuente E., López de Quinto S. 2001; Functional interactions in internal translation initiation directed by viral and cellular IRES elements. Journal of General Virology 82:973–984
    [Google Scholar]
  62. Martuza R. L. 2000; Conditionally replicating herpes vectors for cancer therapy. Journal of Clinical Investigation 105:841–846
    [Google Scholar]
  63. Martuza R., Malick A., Markert J. M. 1991; Experimental therapy of human gliomas by means of a genetically-engineered virus mutant. Science 252:854–855
    [Google Scholar]
  64. Mineta T., Rabkin S. D., Martuza R. L. 1994; Treatment of malignant gliomas using ganciclovir hypersensitive ribonucleotide reductase deficient herpes simplex virus mutant. Cancer Research 54:3963–3966
    [Google Scholar]
  65. Mineta T., Rabkin S., Yazaki T., Hunter W. D., Martuza R. L. 1995; Attenuated multimutated herpes simplex virus type I for the treatment of malignant gliomas. Nature Medicine 1:938–944
    [Google Scholar]
  66. Miyatake S.-I., Iyer A., Martuza R. L., Rabkin S. D. 1997; Transcriptional targeting of herpes simplex virus for cell-specific replication. Journal of Virology 71:5124–5132
    [Google Scholar]
  67. Miyatake S.-I., Tani S., Feigenbaum F., Sundaresan P., Toda H., Narumi O., Kikuchi H., Hashimoto N., Hangai M., Martuza R. L., Rabkin S. D. 1999; Hepatoma-specific anti-tumor activity of an albumin enhancer/promoter regulated herpes simplex virus in vivo. Gene Therapy 6:564–572
    [Google Scholar]
  68. Naniche D., Varior-Krishnan G., Cervoni F., Wild R. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Journal of Virology 67:6025–6032
    [Google Scholar]
  69. Nemerow G. R. 2000; Cell receptors involved in adenovirus entry. Virology 274:1–4
    [Google Scholar]
  70. Nemunaitis J., Ganly I., Khuri F., Arseneau J., Kuhn J., McCarty T., Landers S., Maples P., Romels L., Randlev B., Reid T., Kaye S., Kirn D. 2000; Selective replication and oncolysis in p53 mutant tumors with Onyx-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Research 60:6359–6366
    [Google Scholar]
  71. Nettelbeck D. M., Jerome V., Muller R. 2000; Gene therapy: designer promoters for tumour targeting. Trends in Genetics 16:174–181
    [Google Scholar]
  72. Nevins J. R. 2001; The Rb/E2F pathway and cancer. Human Molecular Genetics 10:699–703
    [Google Scholar]
  73. Nevins J. R., Vogt P. K. 1996; Cell transformation by viruses. In Fields Virology pp 301–343 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  74. Oppenheim J. J., Murphy W. J., Chertox O., Schirrmacher V., Wang J. M. 1997; Prospects for cytokine and chemokine biotherapy. Clinical Cancer Research 3:2682–2686
    [Google Scholar]
  75. Parker J. N., Gillespie G. Y., Love C. E., Randall S., Whitely R. J., Markert J. M. 2000; Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proceedings of the National Academy of Sciences, USA 97:2208–2213
    [Google Scholar]
  76. Pawlik T. M., Nakamura H., Yoon S. S., Mullen J. T., Chandrasekhar S., Chiocca E. A., Tanabe K. K. 2000; Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a replication-competent, genetically engineered herpesvirus. Cancer Research 60:2790–2795
    [Google Scholar]
  77. Phuangsab A., Lorence R. M., Reichard K. W., Peeples M. E., Walter R. J. 2001; Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Letters 172:27–36
    [Google Scholar]
  78. Printz M. A., Gonzalez A. M., Cunningham M., Gu D.-L., Ong M., Pierce G. F., Aukerman S. L. 2000; Fibroblast growth factor 2-retargeted adenoviral vectors exhibit a modified biolocalization pattern and display reduced toxicity relative to native adenoviral vectors. Human Gene Therapy 11:191–204
    [Google Scholar]
  79. Pyles R. B., Warnick R. E., Chalk C. L., Szanti B. E., Parysek L. M. 1997; A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Human Gene Therapy 8:533–544
    [Google Scholar]
  80. Ring C. J. A. 1996; Adenovirus vectors. In Gene Therapy pp 61–76 Edited by Lemoine N. R., Cooper D. N. Oxford: Bios Scientific Publishers;
    [Google Scholar]
  81. Ring C. J. A., Blair E. D. 2000; Viruses as vehicles and expressors of genetic material. In Genetically Engineered Viruses. Development and Applications pp 1–4 Edited by Ring C. J. A., Blair E. D. Oxford: Bios Scientific Publishers;
    [Google Scholar]
  82. Rodriguez R., Schuur E. R., Yeong Lim H., Henderson G. A., Simons J. W., Henderson D. R. 1997; Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Research 57:2559–2563
    [Google Scholar]
  83. Rogulski K. R., Freytag S. O., Zhang K., Gilbert J. D., Paielli D. L., Kim J. H., Heise C., Kirn D. H. 2000; In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Research 60:1193–1196
    [Google Scholar]
  84. Rommelaere J., Tattershall P. 1990; Oncosuppression by parvoviruses. pp 41–57 In Handbook of Parvoviruses. Edited by Tijssen P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  85. Rose N. F., Roberts A., Buonocore L., Rose J. K. 2000; Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. Journal of Virology 74:10903–10910
    [Google Scholar]
  86. Rothmann T., Hengstermann A., Whitaker N. J., Scheffner M., Zur Hausen H. 1998; Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. Journal of Virology 72:9470–9478
    [Google Scholar]
  87. Schneider U., Bullough F., Vongpunsawad S., Russell S. J., Cattaneo R. 2000; Recombinant measles viruses efficiently entering cells through targeted receptors. Journal of Virology 74:9928–9936
    [Google Scholar]
  88. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K. 1996; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proceedings of the National Academy of Sciences, USA 93:11359–11365
    [Google Scholar]
  89. Schnell M. J., Johnson J. E., Buonocore L., Rose J. K. 1997; Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 90:849–857
    [Google Scholar]
  90. Shayakhmetov D. M., Papayannopoulou T., Stamatoyannopoulos G., Lieber A. 2000; Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. Journal of Virology 74:2567–2583
    [Google Scholar]
  91. Shinoura N., Yoshida Y., Tsunoda R., Ohashi M., Zhang W., Asai A., Kirino T., Hamada H. 1999; Highly attenuated cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Research 59:3411–3416
    [Google Scholar]
  92. Sinkovics J., Horvath J. 1993; New developments in the virus therapy of cancer: a historical review. Intervirology 36:193–214
    [Google Scholar]
  93. Sinkovics J., Horvath J. 2000; Newcastle disease virus (NDV): a brief history of its oncolytic strains. Journal of Clinical Virology 16:1–15
    [Google Scholar]
  94. Spear P. G. 1993; Entry of alphaherpesviruses into cells. Seminars in Virology 4:167–180
    [Google Scholar]
  95. Springer C. J., Niculescu-Duvaz I. 2000; Pro-drug activating systems in suicide gene therapy. Journal of Clinical Investigation 105:1161–1167
    [Google Scholar]
  96. Steegenga W. T., Riteco N., Bos J. L. 1999; Infectivity and expression of the early adenovirus proteins are important regulators of wild-type and deltaE1B adenovirus replication in human cells. Oncogene 18:5032–5043
    [Google Scholar]
  97. Stojdl D. F., Lichty B., Knowles S., Marius R., Atkins H., Sonenberg N., Bell J. C. 2000; Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Medicine 6:821–825
    [Google Scholar]
  98. Strong J. E., Coffey M. C., Tang D., Sabinin P., Lee P. W. K. 1998; The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO Journal 12:3351–3362
    [Google Scholar]
  99. Suzuki K., Fueyo J., Krasnykh V., Reynolds P. N., Curiel D. T., Alemany R. 2001; A conditionally-replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clinical Cancer Research 7:120–126
    [Google Scholar]
  100. Taqi A. M., Abdurrahman M. B., Yakubu A. M., Fleming A. F. 1981; Regression of Hodgkin’s disease after measles. Lancet i:1112
    [Google Scholar]
  101. Tollefson A., Scaria A., Hermiston T. W., Ryerse J. S., Wold L. J., Wold W. S. M. 1996; The adenovirus death protein (E3-11·6K) is required at late stages of infection for efficient lysis and release of adenovirus from infected cells. Journal of Virology 70:2296–2306
    [Google Scholar]
  102. Turnell A. S., Grand R. J. A., Gallimore P. H. 1999; The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. Journal of Virology 73:2074–2083
    [Google Scholar]
  103. Walther W., Stein U. 2000; Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60:249–271
    [Google Scholar]
  104. Wei M. X., Tamiya T., Chase M., Boviatsis E. J., Chang T. K. H., Hochberg F. H., Waxman D. J., Breakefield X. O., Chiocca E. A. 1994; Experimental tumor therapy in mice with the cyclophosphamide-activating cytochrome P450 2B1. Human Gene Therapy 5:969–978
    [Google Scholar]
  105. Weiss R. A. 1998; Introducing viruses and cancer. In Viruses and Human Cancer pp 1–15 Edited by Arrand J. R., Harper D. R. Oxford: Bios Scientific Publishers;
    [Google Scholar]
  106. Wickham T. J., Tzeng E., Shears L. L.II., Roelvink P. W., Li Y., Lee G. M., Brough D. E., Lizonova A., Kovesdi I. 1997; Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. Journal of Virology 71:8221–8229
    [Google Scholar]
  107. Wilcox M. E., Yang W., Senger D., Rewcastle N. B., Morris D. G., Brasher P. M., Shi Z. Q., Johnston R. N., Nishikawa S., Lee P. W., Forsyth P. A. 2001; Reovirus as an oncolytic agent against experimental human malignant gliomas. Journal of the National Cancer Institute 93:903–912
    [Google Scholar]
  108. Wildner O., Morris J. C. 2000a; The role of E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus tk: assessment of antitumor efficacy and toxicity. Cancer Research 60:4167–4174
    [Google Scholar]
  109. Wildner O., Morris J. C. 2000b; Therapy of peritoneal carcinomatosis from colon cancer with oncolytic adenoviruses. Journal of Gene Medicine 2:353–360
    [Google Scholar]
  110. Wong R. J., Patel S. G., Kim S.-H., DeMatteo R. P., Malhotra S., Bennett J. J., St-Louis M., Shah J. P., Johnson P. A., Fong Y. 2001; Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Human Gene Therapy 12:253–265
    [Google Scholar]
  111. Woods D. B., Vousden K. H. 2001; Regulation of p53 function. Experimental Cell Research 264:56–66
    [Google Scholar]
  112. Yohn D. S., Hammon W. McD., Aitchison R. W., Casto B. C. 1968; Oncolytic potentials of non-human viruses for human cancer: effects of five viruses on heterotransplantable human tumors. Journal of the National Cancer Institute 41:523–529
    [Google Scholar]
  113. Yu D.-C., Sakamoto G. T., Henderson D. R. 1999a; Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication-competent adenovirus for prostate cancer therapy. Cancer Research 59:1498–1504
    [Google Scholar]
  114. Yu D.-C., Chen Y., Seng M., Dilley J., Henderson D. R. 1999b; The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Research 59:4200–4203
    [Google Scholar]
  115. Zhang J.-F., Hu C., Geng Y., Selm J., Klein S. B., Orazi A., Taylor M. W. 1996; Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proceedings of the National Academy of Sciences, USA 93:4513–4518
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-3-491
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error