1887

Abstract

Recombinant vaccinia viruses are well-characterized tools that can be used to define novel approaches to vaccine formulation and delivery. While vector co-expression of immune mediators has enormous potential for optimizing the composition of vaccine-induced immune responses, the impact on antigen expression and vector antigenicity must also be considered. Co-expression of IL-4 increased vaccinia virus vector titres, while IFN-γ co-expression reduced vaccinia virus replication in BALB/c mice and in C57BL/6 mice infected with some recombinant viruses. Protection against respiratory syncytial virus (RSV) challenge was similar in mice immunized with vaccinia virus expressing RSV G glycoprotein and IFN-γ, even though the replication efficiency of the vector was diminished. These data demonstrate the ability of vector-expressed cytokine to influence the virulence of the vector and to direct the development of selected immune responses. This suggests that the co-expression of cytokines and other immunomodulators has the potential to improve the safety of vaccine vectors while improving the immunogenicity of vaccine antigens.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-9-2107
2001-09-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/9/0822107a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-9-2107&mimeType=html&fmt=ahah

References

  1. Alcamı́, A. & Smith, G. L. ( 1995; ). Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. Journal of Virology 69, 4633-4639.
    [Google Scholar]
  2. Alwan, W. H. & Openshaw, P. J. M. ( 1993; ). Distinct patterns of T- and B-cell immunity to respiratory syncytial virus induced by individual viral proteins. Vaccine 11, 431-437.[CrossRef]
    [Google Scholar]
  3. An, L.-L. & Whitton, J. L. ( 1997; ). A multivalent minigene vaccine, containing B-cell, cytotoxic T-lymphocyte, and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen. Journal of Virology 71, 2292-2302.
    [Google Scholar]
  4. Andrew, M. E., Coupar, B. E. H., Ada, G. L. & Boyle, D. B. ( 1986; ). Cell-mediated immune responses to influenza virus antigens expressed by vaccinia virus recombinants. Microbial Pathogenesis 1, 443-452.[CrossRef]
    [Google Scholar]
  5. Andrew, M. E., Coupar, B. E. H. & Boyle, D. B. ( 1989; ). Humoral and cell-mediated immune responses to recombinant vaccinia viruses in mice. Immunology and Cell Biology 67, 331-337.[CrossRef]
    [Google Scholar]
  6. Aung, S., Tang, Y.-W. & Graham, B. S. ( 1999; ). Interleukin-4 diminishes CD8+ respiratory syncytial virus-specific cytotoxic T-lymphocyte activity in vivo. Journal of Virology 73, 8944-8949.
    [Google Scholar]
  7. Baumgarth, N. & Kelso, A. ( 1996; ). In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. Journal of Virology 70, 4411-4418.
    [Google Scholar]
  8. Bembridge, G. P., Garcia-Beato, R., Lopez, J. A., Melero, J. A. & Taylor, G. ( 1998a; ). Subcellular site of expression and route of vaccination influence pulmonary eosinophilia following respiratory syncytial virus challenge in BALB/c mice sensitized to the attachment G protein. Journal of Immunology 161, 2473-2480.
    [Google Scholar]
  9. Bembridge, G. P., Lopez, J. A., Cook, R., Melero, J. A. & Taylor, G. ( 1998b; ). Recombinant vaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) and interleukin-4 (IL-4) does not inhibit the development of RSV-specific memory cytotoxic T lymphocytes, whereas priming is diminished in the presence of high levels of IL-2 or gamma interferon. Journal of Virology 72, 4080-4087.
    [Google Scholar]
  10. Boyle, D. B. & Coupar, B. E. H. ( 1986; ). Identification and cloning of the fowlpox virus thymidine kinase gene using vaccinia virus. Journal of General Virology 67, 1591-1600.[CrossRef]
    [Google Scholar]
  11. Bukreyev, A., Whitehead, S. S., Bukreyeva, N., Murphy, B. R. & Collins, P. L. ( 1999; ). Interferon γ expressed by a recombinant respiratory syncytial virus attenuates virus replication in mice without compromising immunogenicity. Proceedings of the National Academy of Sciences, USA 96, 2367-2372.[CrossRef]
    [Google Scholar]
  12. Chakrabarti, S., Brechling, K. & Moss, B. ( 1985; ). Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Molecular and Cellular Biology 5, 3403-3409.
    [Google Scholar]
  13. Coupar, B. E. H., Boyle, D. B. & Both, G. W. ( 1987; ). Effect of in vitro mutations in a vaccinia virus early promoter region monitored by herpes simplex virus thymidine kinase expression in recombinant vaccinia virus. Journal of General Virology 68, 2299-2309.[CrossRef]
    [Google Scholar]
  14. Coupar, B. E. H., Andrew, M. E. & Boyle, D. B. ( 1988; ). A general method for the construction of recombinant vaccinia viruses expressing multiple foreign genes. Gene 68, 1-10.[CrossRef]
    [Google Scholar]
  15. Davis, N. L., Brown, K. W. & Johnston, R. E. ( 1996; ). A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. Journal of Virology 70, 3781-3787.
    [Google Scholar]
  16. Doherty, P. C., Allan, W., Boyle, D. B., Coupar, B. E. H. & Andrew, M. E. ( 1989; ). Recombinant vaccinia viruses and the development of immunization strategies using influenza virus. Journal of Infectious Diseases 159, 1119-1122.[CrossRef]
    [Google Scholar]
  17. Fischer, J. E., Johnson, J. E., Kuli-Zade, R. K., Johnson, T. R., Aung, S., Parker, R. A. & Graham, B. S. ( 1997; ). Overexpression of interleukin-4 delays virus clearance in mice infected with respiratory syncytial virus. Journal of Virology 71, 8672-8677.
    [Google Scholar]
  18. Flexner, C., Moss, B., London, W. T. & Murphy, B. R. ( 1990; ). Attenuation and immunogenicity in primates of vaccinia virus recombinants expressing human interleukin-2. Vaccine 8, 17-21.[CrossRef]
    [Google Scholar]
  19. Graham, B. S. ( 1995; ). Pathogenesis of respiratory syncytial virus vaccine-augmented pathology. American Journal of Respiratory and Critical Care Medicine 152, S63-S66.[CrossRef]
    [Google Scholar]
  20. Graham, B. S., Perkins, M. D., Wright, P. F. & Karzon, D. T. ( 1988; ). Primary respiratory syncytial virus infection in mice. Journal of Medical Virology 26, 153-162.[CrossRef]
    [Google Scholar]
  21. Graham, B. S., Bunton, L. A., Wright, P. F. & Karzon, D. T. ( 1991; ). Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. Journal of Clinical Investigation 88, 1026-1033.[CrossRef]
    [Google Scholar]
  22. Hancock, G. E., Speelman, D. J., Heers, K., Bortell, E., Smith, J. & Cosco, C. ( 1996; ). Generation of atypical pulmonary inflammatory responses in BALB/c mice after immunization with the native attachment (G) glycoprotein of respiratory syncytial virus. Journal of Virology 70, 7783-7791.
    [Google Scholar]
  23. Harris, N., Buller, R. M. & Karupiah, G. ( 1995; ). Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. Journal of Virology 69, 910-915.
    [Google Scholar]
  24. Hsu, K.-H. L., Lubeck, M. D., Bhat, B. M., Bhat, R. A., Kostek, B., Selling, B. H., Mizutani, S., Davis, A. R. & Hung, P. P. ( 1994; ). Efficacy of adenovirus-vectored respiratory syncytial virus vaccines in a new ferret model. Vaccine 12, 607-612.[CrossRef]
    [Google Scholar]
  25. Hu, F. Q., Smith, C. A. & Pickup, D. J. ( 1994; ). Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. Virology 204, 343-356.[CrossRef]
    [Google Scholar]
  26. Hussell, T. & Openshaw, P. J. M. ( 1998; ). Intracellular IFN-γ expression in natural killer cells precedes lung CD8+ T cell recruitment during respiratory syncytial virus infection. Journal of General Virology 79, 2593-2601.
    [Google Scholar]
  27. Hussell, T., Baldwin, C. J., O’Garra, A. & Openshaw, P. J. M. ( 1997; ). CD8+ T cells control Th2-driven pathology during pulmonary respiratory syncytial virus infection. European Journal of Immunology 27, 3341-3349.[CrossRef]
    [Google Scholar]
  28. Hussell, T., Georgiou, A., Sparer, T. E., Matthews, S., Pala, P. & Openshaw, P. J. M. ( 1998; ). Host genetic determinants of vaccine-induced eosinophilia during respiratory syncytial virus infection. Journal of Immunology 161, 6215-6222.
    [Google Scholar]
  29. Johnson, T. R. & Graham, B. S. ( 1999; ). Secreted respiratory syncytial virus G glycoprotein induces interleukin-5 (IL-5), IL-13, and eosinophilia by an IL-4-independent mechanism. Journal of Virology 73, 8485-8495.
    [Google Scholar]
  30. Johnson, T. R., Johnson, J. E., Roberts, S. R., Wertz, G. W., Parker, R. A. & Graham, B. S. ( 1998; ). Priming with secreted glycoprotein G of respiratory syncytial virus (RSV) augments interleukin-5 production and tissue eosinophilia after RSV challenge. Journal of Virology 72, 2871-2880.
    [Google Scholar]
  31. Joklik, W. K. (1985). Molecular biology of vaccinia virus: structure of poxvirus DNA. In Vaccinia Viruses as Vectors for Vaccine Antigens, vol. 1, pp. 15–36. Edited by G. V. Quinnan, Jr. New York: Elsevier.
  32. Karupiah, G., Woodhams, C. E., Blanden, R. V. & Ramshaw, I. A. ( 1991; ). Immunobiology of infection with recombinant vaccinia virus encoding murine-IL-2. Journal of Immunology 147, 4327-4332.
    [Google Scholar]
  33. Karupiah, G., Xie, Q. W., Buller, R. M. L., Nathan, C., Duarte, C. & MacMicking, J. D. ( 1993; ). Inhibition of viral replication by interferon-γ-induced nitric oxide synthase. Science 261, 1445-1448.[CrossRef]
    [Google Scholar]
  34. Kopf, M., Le Gros, G., Bachmann, M., Lamers, M. C., Bluethmann, H. & Kohler, G. ( 1993; ). Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362, 245-248.[CrossRef]
    [Google Scholar]
  35. Lee, M. S., Roos, J. M., McGuigan, L. C., Smith, K. A., Cormier, N., Cohen, L. K., Roberts, B. E. & Payne, L. G. ( 1992; ). Molecular attenuation of vaccinia virus: mutant generation and animal characterization. Journal of Virology 66, 2617-2630.
    [Google Scholar]
  36. Levine, S., Dillman, T. R. & Montgomery, P. C. ( 1989; ). The envelope proteins from purified respiratory syncytial virus protect mice from intranasal virus challenge. Proceedings of the Society for Experimental Biology and Medicine 190, 349-356.[CrossRef]
    [Google Scholar]
  37. Lucey, D. R., Clerici, M. & Shearer, G. M. ( 1996; ). Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clinical Microbiology Reviews 9, 532-562.
    [Google Scholar]
  38. Mackett, M., Smith, G. L. & Moss, B. ( 1982; ). Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences, USA 79, 7415-7419.[CrossRef]
    [Google Scholar]
  39. Mars, M. & Beaud, G. ( 1987; ). Characterization of vaccinia virus early promoters and evaluation of their informational content. Journal of Molecular Biology 198, 619-631.[CrossRef]
    [Google Scholar]
  40. Mathews, J. H., Kinney, R. M., Roehrig, J. T., Barrett, A. D. T. & Trent, D. W. ( 1994; ). Murine T-helper cell immune response to recombinant vaccinia–Venezuelan equine encephalitis virus. Vaccine 12, 620-624.[CrossRef]
    [Google Scholar]
  41. Murphy, B. R., Sotnikov, A.., Paradiso, P. R., Hildreth, S. W., Jenson, A. B., Baggs, R. B., Lawrence, L., Zubak, J. J., Chanock, R. M., Beeler, J. A. & Prince, G. A. ( 1989; ). Immunization of cotton rats with the fusion (F) and large (G) glycoproteins of respiratory syncytial virus (RSV) protects against RSV challenge without potentiating RSV disease. Vaccine 7, 533-540.[CrossRef]
    [Google Scholar]
  42. Olmsted, R. A., Elango, N., Prince, G. A., Murphy, B. R., Johnson, P. R., Moss, B., Chanock, R. M. & Collins, P. L. ( 1986; ). Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: comparison of the individual contributions of the F and G glycoproteins to host immunity. Proceedings of the National Academy of Sciences, USA 83, 7462-7466.[CrossRef]
    [Google Scholar]
  43. Olmsted, R. A., Buller, R. M., Collins, P. L., London, W. T., Beeler, J. A., Prince, G. A., Chanock, R. M. & Murphy, B. R. ( 1988; ). Evaluation in non-human primates of the safety, immunogenicity and efficacy of recombinant vaccinia viruses expressing the F or G glycoprotein of respiratory syncytial virus. Vaccine 6, 519-524.[CrossRef]
    [Google Scholar]
  44. Openshaw, P. J. M., Clarke, S. L. & Record, F. M. ( 1992; ). Pulmonary eosinophilic response to respiratory syncytial virus infection in mice sensitized to the major surface glycoprotein G. International Immunology 4, 493-500.[CrossRef]
    [Google Scholar]
  45. Palumbo, G. J., Buller, R. M. & Glasgow, W. C. ( 1994; ). Multigenic evasion of inflammation by poxviruses. Journal of Virology 68, 1737-1749.
    [Google Scholar]
  46. Perkus, M. E., Tartaglia, J. & Paoletti, E. ( 1995; ). Poxvirus-based vaccine candidates for cancer, AIDS, and other infectious diseases. Journal of Leukocyte Biology 58, 1-13.
    [Google Scholar]
  47. Piedra, P. A., Faden, H. S., Camussi, G., Wong, D. T. & Ogra, P. L. ( 1989; ). Mechanism of lung injury in cotton rats immunized with formalin-inactivated respiratory syncytial virus. Vaccine 7, 34-38.[CrossRef]
    [Google Scholar]
  48. Ramshaw, I. A., Andrew, M. E., Phillips, S. M., Boyle, D. B. & Coupar, B. E. H. ( 1987; ). Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection. Nature 329, 545-546.[CrossRef]
    [Google Scholar]
  49. Roberts, S. R., Lichtenstein, D. L., Ball, L. A. & Wertz, G. W. ( 1994; ). The membrane-associated and secreted forms of the respiratory syncytial virus attachment glycoprotein G are synthesized from alternative initiation codons. Journal of Virology 68, 4538-4546.
    [Google Scholar]
  50. Ruby, J. & Ramshaw, I. A. ( 1991; ). The antiviral activity of immune CD8+ T cells is dependent on interferon-γ. Lymphokine and Cytokine Research 10, 353-358.
    [Google Scholar]
  51. Sharma, D. P., Ramsay, A. J., Maguire, D. J., Rolph, M. S. & Ramshaw, I. A. ( 1996; ). Interleukin-4 mediates down regulation of antiviral cytokine expression and cytotoxic T-lymphocyte responses and exacerbates vaccinia virus infection in vivo. Journal of Virology 70, 7103-7107.
    [Google Scholar]
  52. Sparer, T. E., Matthews, S., Hussell, T., Rae, A. J., Garcia-Barreno, B., Melero, J. A. & Openshaw, P. J. M. ( 1998; ). Eliminating a region of respiratory syncytial virus attachment protein allows induction of protective immunity without vaccine-enhanced lung eosinophilia. Journal of Experimental Medicine 187, 1921-1926.[CrossRef]
    [Google Scholar]
  53. Srikiatkhachorn, A. & Braciale, T. J. ( 1997a; ). Virus-specific memory and effector T lymphocytes exhibit different cytokine responses to antigens during experimental murine respiratory syncytial virus infection. Journal of Virology 71, 678-685.
    [Google Scholar]
  54. Srikiatkhachorn, A. & Braciale, T. J. ( 1997b; ). Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection. Journal of Experimental Medicine 186, 421-432.[CrossRef]
    [Google Scholar]
  55. Srikiatkhachorn, A., Chang, W. & Braciale, T. J. ( 1999; ). Induction of Th-1 and Th-2 responses by respiratory syncytial virus attachment glycoprotein is epitope and major histocompatibility complex independent. Journal of Virology 73, 6590-6597.
    [Google Scholar]
  56. Takao, S.-I., Kiyotani, K., Sakaguchi, T., Fujii, Y., Seno, M. & Yoshida, T. ( 1997; ). Protection of mice from respiratory Sendai virus infections by recombinant vaccinia viruses. Journal of Virology 71, 832-838.
    [Google Scholar]
  57. Tang, Y.-W. & Graham, B. S. ( 1996; ). Potential for directing appropriate responses to vaccines by cytokine manipulation. Clinical Immunotherapeutics 5, 327-333.[CrossRef]
    [Google Scholar]
  58. Tang, Y.-W. & Graham, B. S. ( 1997; ). T cell source of type 1 cytokines determines illness patterns in respiratory syncytial virus-infected mice. Journal of Clinical Investigation 99, 2183-2191.[CrossRef]
    [Google Scholar]
  59. Tebbey, P. W., Hagen, M. & Hancock, G. E. ( 1998; ). Atypical pulmonary eosinophilia is mediated by a specific amino acid sequence of the attachment (G) protein of respiratory syncytial virus. Journal of Experimental Medicine 188, 1967-1972.[CrossRef]
    [Google Scholar]
  60. Varga, S. M., Wissinger, E. L. & Braciale, T. J. ( 2000; ). The attachment (G) glycoprotein of respiratory syncytial virus contains a single immunodominant epitope that elicits both Th1 and Th2 CD4+ T cell responses. Journal of Immunology 165, 6487-6495.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-9-2107
Loading
/content/journal/jgv/10.1099/0022-1317-82-9-2107
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error