1887

Abstract

Murine monoclonal antibody 206 (MAb mu206) binds to gH, the varicella-zoster virus (VZV) fusogen, neutralizing the virus in the absence of complement and inhibiting cell-to-cell spread and egress of VZV in cultured cells. We have humanized this antibody to generate MAb hu206 by complementarity determining region grafting. MAb hu206 retained binding and neutralizing activity, as well as cross-reactivity with ten different VZV strains. Single-chain antibody fragments (scAb) derived from MAb hu206 were produced in . These scAb retained the binding properties of the whole antibody. However, monomeric scAb exhibited markedly reduced neutralizing activity compared to the bivalent parental MAb hu206. Shortening the peptide linker joining the V to the V domain from 14 to 5 or even 0 residues encouraged multimerization and increased neutralizing efficacy. The fact that Fab fragments enzymatically generated from whole MAb hu206 lost their neutralizing potency lent support to the proposal that valency is important for VZV neutralization at this epitope.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-8-1959
2001-08-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/8/0821959a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-8-1959&mimeType=html&fmt=ahah

References

  1. Abendroth A., Arvin A. M. 2000; Host response to primary infection. In Varicella-Zoster Virus pp 142–156 Edited by Arvin A. M., Gershon A. A. Cambridge: Cambridge University Press;
    [Google Scholar]
  2. Bird R. E., Hardman K. D., Jacobson J. W., Johnson S., Kaufman B. M., Lee S.-M., Lee T., Pope S. H., Riordan G. S., Whitlow M. 1988; Single-chain antigen-binding proteins. Science 242:423–426
    [Google Scholar]
  3. Cohen J. I., Straus S. E. 1996; Varicella-zoster virus and its replication. In Fields Virology pp 2525–2545 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  4. Dooley H., Grant S. D., Harris W. J., Porter A. J. 1998; Stabilization of antibody fragments in adverse environments. Biotechnology and Applied Biochemistry 28:77–83
    [Google Scholar]
  5. Grose C. 1990; Glycoproteins encoded by varicella-zoster virus: biosynthesis, phosphorylation and intracellular trafficking. Annual Review of Microbiology 44:59–80
    [Google Scholar]
  6. Grose C., Brunell P. A. 1978; Varicella-zoster virus: isolation and propagation in human melanoma cells at 36 and 32 °C. Infection and Immunity 19:199–203
    [Google Scholar]
  7. Grose C., Edmond B. J., Brunell P. A. 1979; Complement-enhanced neutralizing antibody response to varicella-zoster virus. Journal of Infectious Diseases 139:432–437
    [Google Scholar]
  8. Grose C., Ye M., Padilla J. 2000; Pathogenesis of primary infection. In Varicella-Zoster Virus pp 105–122 Edited by Arvin A. M., Gershon A. A. Cambridge: Cambridge University Press;
    [Google Scholar]
  9. Holliger P., Prospero T., Winter G. 1993; ‘Diabodies’: small bivalent and bispecific antibody fragments. Proceedings of the National Academy of Sciences, USA 90:6444–6448
    [Google Scholar]
  10. Hope-Simpson R. E. 1965; The nature of herpes zoster: a long-term study and a new hypothesis. Proceedings of the Royal Society of Medicine 58:9–20
    [Google Scholar]
  11. Kortt A. A., Lah M., Oddie G. W., Gruen C. L., Burns J. E., Pearce L. A., Atwell J. L., McCoy A. J., Howlett G. J., Metzger D. W., Webster R. G., Hudson P. J. 1997; Single-chain Fv fragments of anti-neuraminidase antibody NC10 containing five- and ten-residue linkers form dimers and with zero-residue linker a trimer. Protein Engineering 10:423–433
    [Google Scholar]
  12. Lamarre A., Talbot P. J. 1995; Protection from lethal coronavirus infection by immunoglobulin fragments. Journal of Immunology 154:3975–3984
    [Google Scholar]
  13. Lawrence L. J., Kortt A. A., Iliades P., Tulloch P. A., Hudson P. J. 1998; Orientation of antigen binding sites in dimeric and trimeric single chain Fv antibody fragments. FEBS Letters 425:479–484
    [Google Scholar]
  14. McGregor D. P., Molloy P. E., Cunningham C., Harris W. J. 1994; Spontaneous assembly of bivalent single chain antibody fragments in Escherichia coli. Molecular Immunology 31:219–226
    [Google Scholar]
  15. Mason P., Berinstein A., Baxt B., Parsells R., Kang A., Rieder E. 1996; Cloning and expression of a single-chain antibody fragment specific for foot-and-mouth disease virus. Virology 224:548–554
    [Google Scholar]
  16. Molloy P., Brydon L., Porter A. J., Harris W. J. 1995; Separation and concentration of bacteria with immobilized antibody fragments. Journal of Applied Bacteriology 78:359–365
    [Google Scholar]
  17. Montalvo E. A., Grose C. 1986; Neutralizing epitope of varicella zoster virus on native viral glycoprotein gp118 (VZV glycoprotein gpIII). Virology 149:230–241
    [Google Scholar]
  18. Mulligan R. C., Berg P. 1981; Selection for animal cells that express the Escherichia coli gene coding for xanthine–guanine phosphoribosyltransferase. Proceedings of the National Academy of Sciences, USA 78:2072–2076
    [Google Scholar]
  19. Nakamaye K. L., Eckstein F. 1986; Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Research 14:9679–9698
    [Google Scholar]
  20. Riechmann L., Clark M., Waldmann H., Winter G. 1988; Reshaping human antibodies for therapy. Nature 332:323–327
    [Google Scholar]
  21. Rodriguez J. E., Moninger T., Grose C. 1993; Entry and egress of varicella virus blocked by same anti-gH monoclonal antibody. Virology 196:840–844
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Schofield D. J., Stephenson J. R., Dimmock N. J. 1997; Variations in the neutralizing and haemagglutination-inhibiting activities of five influenza A virus-specific IgGs and their antibody fragments. Journal of General Virology 78:2431–2439
    [Google Scholar]
  24. Sugano T., Tomiyama T., Matsumoto Y. I., Sasaki S., Kimura T., Forghani B., Masuho Y., Matsumoto Y. 1991; A human monoclonal antibody against varicella-zoster virus glycoprotein III. Journal of General Virology 72:2065–2073
    [Google Scholar]
  25. Tempest P. R., Bremner P., Lambert M., Taylor G., Furze J. M., Carr F. J., Harris W. J. 1991; Reshaping a human monoclonal antibody to inhibit human respiratory syncytial virus infection in vivo. Bio/Technology 9266–271
    [Google Scholar]
  26. Thullier P., Lafaye P., Mégret F., Deubel V., Jouan A., Mazié J. C. 1999; A recombinant Fab neutralizes dengue virus in vitro. Journal of Biotechnology 69:183–190
    [Google Scholar]
  27. Ward E. S., Gussow D., Griffiths A. D., Jones P. T., Winter G. 1989; Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341:544–546
    [Google Scholar]
  28. Winter G., Harris W. J. 1993; Humanized antibodies. Immunology Today 14:243–246
    [Google Scholar]
  29. Zaia J. A., Levin M. J., Preblud S. R., Leszczynski J., Wright G. G., Ellis R. J., Curtis A. C., Valerio M. A., LeGore J. 1983; Evaluation of varicella-zoster immune globulin: protection of immunosuppressed children after household exposure to varicella. Journal of Infectious Diseases 147:737–743
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-8-1959
Loading
/content/journal/jgv/10.1099/0022-1317-82-8-1959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error