1887

Abstract

Foot-and-mouth disease virus (FMDV) is known to employ the conserved Arg–Gly–Asp (RGD) tripeptide located on the variable βG–βH loop of the VP1 capsid protein for binding to cells. Coxsackievirus A9 (CAV9) also carries an RGD sequence, but on a short C-terminal extension of its VP1 and in a different amino acid context. This apparent relationship raised the question of whether insertion of the heterologous CAV9 sequence into FMDV would influence infection by the genetically modified FMDV. Four VP1 mutants were generated by PCR mutagenesis of a full-length FMDV cDNA plasmid. After transfection of BHK-21 cells, viral protein synthesis and virus particle formation could be detected. Two of the four mutants, mV9b and mV9d, could be propagated in BHK-21 cells, but not in CV-1 cells. Both of these mutants contained 17 amino acids of the C terminus of CAV9 VP1. Infection of BHK cells could be specifically inhibited by rabbit immune serum raised against a synthetic peptide representing the amino acid sequence of the C-terminal extension of CAV9 VP1. This demonstrated the direct involvement of the inserted sequence in cell infection. In fact, genetically modified FMDV OK was capable of employing the VP1 C-terminal RGD region of CAV9 for infection of BHK cells. In addition, these results show that, even in cell culture-adapted viruses, the RGD-containing βG–βH loop plays an important role in virus infectivity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-7-1703
2001-07-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/7/0821703a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-7-1703&mimeType=html&fmt=ahah

References

  1. Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. & Brown, F. ( 1989; ). The three-dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution. Nature 337, 709-716.[CrossRef]
    [Google Scholar]
  2. Bachrach, H. L. ( 1977; ). Foot-and-mouth disease virus: properties, molecular biology and immunogenicity. Beltsville Symposia in Agricultural Research 1, 3-32.
    [Google Scholar]
  3. Baranowski, E., Ruiz-Jarabo, C. M., Sevilla, N., Andreu, D., Beck, E. & Domingo, E. ( 2000; ). Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. Journal of Virology 74, 1641-1647.[CrossRef]
    [Google Scholar]
  4. Bergelson, J. M., Mohanty, J. G., Crowell, R. L., St John, N. F., Lublin, D. M. & Finberg, R. W. ( 1995; ). Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). Journal of Virology 69, 1903-1906.
    [Google Scholar]
  5. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L. & Finberg, R. W. ( 1997; ). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320-1323.[CrossRef]
    [Google Scholar]
  6. Chang, K. H., Day, C., Walker, J., Hyypiä, T. & Stanway, G. ( 1992; ). The nucleotide sequences of wild-type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. Journal of General Virology 73, 621-626.[CrossRef]
    [Google Scholar]
  7. Chomczynski, P. & Sacchi, N. ( 1987; ). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162, 156-159.
    [Google Scholar]
  8. Chou, P. Y. & Fasman, G. D. ( 1974; ). Prediction of protein conformation. Biochemistry 13, 222-245.[CrossRef]
    [Google Scholar]
  9. Colonno, R. J., Condra, J. H., Mizutani, S., Callahan, P. L., Davies, M.-E. & Murcko, M. A. ( 1988; ). Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proceedings of the National Academy of Sciences, USA 85, 5449-5453.[CrossRef]
    [Google Scholar]
  10. Ehrlich, H. A. (editor) (1989). PCR Technology: Principles and Applications for DNA Amplification. New York: Stockton Press.
  11. Evans, D. J. & Almond, F. W. ( 1998; ). Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis. Trends in Microbiology 6, 198-202.[CrossRef]
    [Google Scholar]
  12. Forss, S., Strebel, K., Beck, E. & Schaller, H. ( 1984; ). Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Research 12, 6587-6601.[CrossRef]
    [Google Scholar]
  13. Fortmüller, U. (1997). Untersuchungen zur Insertionstoleranz im VP1-Kapsidprotein des Coxsackievirus B3. Dissertation, Ludwig-Maximilians-Universität München, Munich, Germany.
  14. Fox, G., Parry, N. R., Barnett, P. V., McGinn, B., Rowlands, D. J. & Brown, F. ( 1989; ). The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Journal of General Virology 70, 625-637.[CrossRef]
    [Google Scholar]
  15. Greve, J. M., Davis, G., Meyer, A. M., Forte, C. P., Yost, S. C., Marlor, C. W., Kamarck, M. E. & McClelland, A. ( 1989; ). The major human rhinovirus receptor is ICAM-1. Cell 56, 839-847.[CrossRef]
    [Google Scholar]
  16. Harlow, E. & Lane, D. ( 1988; ). Cell staining. In Antibodies: A Laboratory Manual , pp. 390-410. Edited by E. Harlow & D. Lane. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory.
  17. Hofer, F., Gruenberger, M., Kowalski, H., Machat, H., Huettinger, M., Kuechler, E. & Blass, D. ( 1994; ). Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proceedings of the National Academy of Sciences, USA 91, 1839-1842.[CrossRef]
    [Google Scholar]
  18. Hogle, J. M., Chow, M. & Filman, D. J. ( 1985; ). Three-dimensional structure of poliovirus at 2·9 Å resolution. Science 229, 1358-1365.[CrossRef]
    [Google Scholar]
  19. Huber, S. A. ( 1994; ). VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. Journal of Virology 68, 3453-3458.
    [Google Scholar]
  20. Hynes, R. O. ( 1992; ). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25.[CrossRef]
    [Google Scholar]
  21. Karnauchow, T. M., Tolson, D. L., Harrison, B. A., Altman, E., Lublin, D. M. & Dimock, K. ( 1996; ). The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55). Journal of Virology 70, 5143-5152.
    [Google Scholar]
  22. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  23. Leippert, M., Beck, E., Weiland, F. & Pfaff, E. ( 1997; ). Point mutations within the βG–βH loop of foot-and-mouth disease virus O1K affect virus attachment to target cells. Journal of Virology 71, 1046-1051.
    [Google Scholar]
  24. Logan, D., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Jackson, T., King, A., Lea, S., Lewis, R., Newman, J., Parry, N., Rowlands, D., Stuart, D. & Fry, E. ( 1993; ). Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362, 566-568.[CrossRef]
    [Google Scholar]
  25. Luo, M., Vriend, G., Kamer, G., Minor, I., Arnold, E., Rossmann, M.-G., Boege, U., Scraba, D. G., Duke, G. M. & Palmenberg, A. C. ( 1987; ). The atomic structure of Mengo virus at 3·0 Å resolution. Science 235, 182-191.[CrossRef]
    [Google Scholar]
  26. Mason, P. W., Rieder, E. & Baxt, B. ( 1994; ). RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proceedings of the National Academy of Sciences, USA 91, 1932-1936.[CrossRef]
    [Google Scholar]
  27. Mendelsohn, C. L., Wimmer, E. & Racaniello, V. R. ( 1989; ). Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56, 855-865.[CrossRef]
    [Google Scholar]
  28. Neff, S., Sá-Carvalho, D., Rieder, E., Mason, P. W., Blystone, S. D., Brown, E. J. & Baxt, B. ( 1998; ). Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. Journal of Virology 72, 3587-3594.
    [Google Scholar]
  29. Neff, S., Mason, P. W. & Baxt, B. ( 2000; ). High-efficiency utilization of the bovine integrin αvβ3 as a receptor for foot-and-mouth disease virus is dependent on the bovine β3 subunit. Journal of Virology 74, 7298-7306.[CrossRef]
    [Google Scholar]
  30. Pfaff, E., Mussgay, M., Böhm, H. O., Schulz, G. E. & Schaller, H. ( 1982; ). Antibodies against a preselected peptide recognize and neutralize foot-and-mouth disease virus. EMBO Journal 1, 869-874.
    [Google Scholar]
  31. Pfaff, E., Thiel, H.-J., Beck, E., Strohmaier, K. & Schaller, H. ( 1988; ). Analysis of neutralizing epitopes on foot-and-mouth disease virus. Journal of Virology 62, 2033-2040.
    [Google Scholar]
  32. Pfaff, E., M ller, H., Haas, B. & Thiel, H.-J. ( 1989; ). Molecular and immunological analysis of foot-and-mouth disease virus mutants. Vaccines (Cold Spring Harbor) 89, 449–456.
    [Google Scholar]
  33. Pierschbacher, M. D. & Ruoslahti, E. ( 1987; ). Influence of stereochemistry of the sequence Arg–Gly–Asp–Xaa on binding specificity in cell adhesion. Journal of Biological Chemistry 262, 17294-17298.
    [Google Scholar]
  34. Powell, R. M., Schmitt, V., Ward, T., Goodfellow, I., Evans, D. J. & Almond, J. W. ( 1998; ). Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. Journal of General Virology 79, 1707-1713.
    [Google Scholar]
  35. Roivainen, M., Hyypiä, T., Piirainen, L., Kalkkinen, N., Stanway, G. & Hovi, T. ( 1991; ). RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. Journal of Virology 65, 4735-4740.
    [Google Scholar]
  36. Roivainen, M., Piirainen, L., Hovi, T., Virtanen, I., Riikonen, T., Heino, J. & Hyypiä, T. ( 1994; ). Entry of coxsackievirus A9 into host cells: specific interactions with αvβ3 integrin, the vitronectin receptor. Virology 203, 357-365.[CrossRef]
    [Google Scholar]
  37. Roivainen, M., Piirainen, L. & Hovi, T. ( 1996; ). Efficient RGD-independent entry process of coxsackievirus A9. Archives of Virology 141, 1909-1919.[CrossRef]
    [Google Scholar]
  38. Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H.-J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B. & Vriend, G. ( 1985; ). Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145-153.[CrossRef]
    [Google Scholar]
  39. Rueckert, R. & Wimmer, E. (1984). Picornaviridae and their replication. In Fields Virology, 2nd edn, pp. 507–548. Edited by B. N. Fields and others. New York: Raven Press.
  40. Ruoslahti, E. & Pierschbacher, M. D. ( 1987; ). New perspectives in cell adhesion: RGD and integrins. Science 238, 491-497.[CrossRef]
    [Google Scholar]
  41. Sangar, D. V. ( 1979; ). The replication of picornaviruses. Journal of General Virology 45, 1-13.[CrossRef]
    [Google Scholar]
  42. Shafren, D. R., Bates, R. C., Agrez, M. V., Herd, R. L., Burns, G. F. & Barry, R. D. ( 1995; ). Coxsackieviruses B1, B3, and B5 use decay-accelerating factor as a receptor for cell attachment. Journal of Virology 69, 3873-3877.
    [Google Scholar]
  43. Shafren, D. R., Dorahy, D. J., Ingham, R. A., Burns, G. F. & Barry, R. D. ( 1997; ). Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. Journal of Virology 71, 4736-4743.
    [Google Scholar]
  44. Stanway, G. & Hyypiä, T. ( 1999; ). Parechoviruses. Journal of Virology 73, 5249-5254.
    [Google Scholar]
  45. Stanway, G., Kalkkinen, N., Roivainen, M., Ghazi, F., Khan, M., Smyth, M., Meurman, O. & Hyypiä, T. ( 1994; ). Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. Journal of Virology 68, 8232-8238.
    [Google Scholar]
  46. Staunton, D. E., Merluzzi, V. J., Rothlein, R., Barton, R., Marlin, S. D. & Springer, T. A. ( 1989; ). A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56, 849-853.[CrossRef]
    [Google Scholar]
  47. Tamkun, J., DeSimone, D. W., Fonda, D., Patel, R. S., Buck, C., Horwitz, A. F. & Hynes, R. O. ( 1986; ). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.[CrossRef]
    [Google Scholar]
  48. Tomko, R. P., Xu, R. & Philipson, L. ( 1997; ). HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proceedings of the National Academy of Sciences, USA 94, 3352-3356.[CrossRef]
    [Google Scholar]
  49. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350-4354.[CrossRef]
    [Google Scholar]
  50. Ward, T., Pipkin, P. A., Clarkson, N. A., Stone, D. M., Minor, P. D. & Almond, J. W. ( 1994; ). Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO Journal 13, 5070-5074.
    [Google Scholar]
  51. Yamada, K. M. & Olden, K. ( 1978; ). Fibronectins – adhesive glycoproteins of cell surface and blood. Nature 275, 179-184.[CrossRef]
    [Google Scholar]
  52. Zibert, A., Maass, G., Strebel, K., Falk, M. M. & Beck, E. ( 1990; ). Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. Journal of Virology 64, 2467-2473.
    [Google Scholar]
  53. Zimmermann, H., Eggers, H. J. & Nelsen-Salz, B. ( 1996; ). Molecular cloning and sequence determination of the complete genome of the virulent echovirus 9 strain Barty. Virus Genes 12, 149-154.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-7-1703
Loading
/content/journal/jgv/10.1099/0022-1317-82-7-1703
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error