1887

Abstract

MRC-5 cells are a well-characterized human diploid fibroblast cell line approved for vaccine production and favoured for the routine propagation of human cytomegalovirus (HCMV). Ectopic expression of telomerase in fibroblasts is capable of overcoming replicative senescence induced by telomere shortening. Following delivery of the hTERT gene to MRC-5 cells using a retrovirus vector three clones were generated that (i) expressed functional telomerase activity, (ii) exhibited telomere extension and (iii) were sustained for >100 population doublings. Immortalized MRC-5-hTERT and also HCA2-hTERT human fibroblasts were both fully permissive for HCMV as determined by plaque assay, studies of virus growth kinetics and measurement of virus yields. Furthermore, telomerase-immortalized HCA2 cells proved capable of supporting the stable maintenance of an EBV-based episomal vector with efficient transgene expression when driven by the HCMV immediate early promoter. An indicator cell line suitable for the efficient detection of HCMV infection was also generated using an episome containing a reporter gene () under the control of the HCMV β-2.7 early promoter. Telomerase immortalization of human fibroblasts will thus facilitate the growth and detection of HCMV and also the generation of helper cell lines for the propagation of HCMV deletion mutants. Immortalization of fibroblasts by telomerase does not affect cell morphology or growth characteristics. The MRC-5-hTERT clones may therefore be suitable for additional applications in virology, cell biology, vaccine production and biotechnology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-4-855
2001-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/4/0820855a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-4-855&mimeType=html&fmt=ahah

References

  1. Akrigg, A., Wilkinson, G. W., Angliss, S. & Greenaway, P. J. ( 1991; ). HIV-1 indicator cell lines. AIDS 5, 153-158.[CrossRef]
    [Google Scholar]
  2. Blake, N., Lee, S., Redchenko, I., Thomas, W., Steven, N., Leese, A., Steigerwald-Mullen, P., Kurilla, M. G., Frappier, L. & Rickinson, A. ( 1997; ). Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7, 791-802.[CrossRef]
    [Google Scholar]
  3. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S. & Wright, W. E. ( 1998; ). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352.[CrossRef]
    [Google Scholar]
  4. Boeckh, M., Gleaves, C. A., Bindra, R. & Meyers, J. D. ( 1991; ). Comparison of MRC-5 and U-373MG astrocytoma cells for detection of cytomegalovirus in shell vial centrifugation cultures. European Journal of Clinical Microbiology & Infectious Diseases 10, 569-572.[CrossRef]
    [Google Scholar]
  5. Cha, T. A., Tom, E., Kemble, G. W., Duke, G. M., Mocarski, E. S. & Spaete, R. R. ( 1996; ). Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. Journal of Virology 70, 78-83.
    [Google Scholar]
  6. Compton, T. ( 1993; ). An immortalized human fibroblast cell line is permissive for human cytomegalovirus infection. Journal of Virology 67, 3644-3648.
    [Google Scholar]
  7. Danos, O. & Mulligan, R. C. ( 1988; ). Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proceedings of the National Academy of Sciences, USA 85, 6460-6464.[CrossRef]
    [Google Scholar]
  8. Faragher, R. G. & Kipling, D. ( 1998; ). How might replicative senescence contribute to human ageing? Bioessays 20, 985-991.[CrossRef]
    [Google Scholar]
  9. Fish, K. N., Depto, A. S., Moses, A. V., Britt, W. & Nelson, J. A. ( 1995; ). Growth kinetics of human cytomegalovirus are altered in monocyte-derived macrophages. Journal of Virology 69, 3737-3743.
    [Google Scholar]
  10. Fish, K. N., Soderberg-Naucler, C., Mills, L. K., Stenglein, S. & Nelson, J. A. ( 1998; ). Human cytomegalovirus persistently infects aortic endothelial cells. Journal of Virology 72, 5661-5668.
    [Google Scholar]
  11. Gönczöl, E., Andrews, P. W. & Plotkin, S. A. ( 1984; ). Cytomegalovirus replicates in differentiated but not in undifferentiated human embryonal carcinoma cells. Science 224, 159-161.[CrossRef]
    [Google Scholar]
  12. Gönczöl, E., Andrews, P. W. & Plotkin, S. A. ( 1985; ). Cytomegalovirus infection of human teratocarcinoma cells in culture. Journal of General Virology 66, 509-515.[CrossRef]
    [Google Scholar]
  13. Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. ( 1977; ). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36, 59-72.[CrossRef]
    [Google Scholar]
  14. Greaves, R. F. & Mocarski, E. S. ( 1998; ). Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. Journal of Virology 72, 366-379.
    [Google Scholar]
  15. Gregory, W. W. & Menegus, M. A. ( 1983; ). Practical protocol for cytomegalovirus isolation: use of MRC-5 cell monolayers incubated for 2 weeks. Journal of Clinical Microbiology 17, 605-609.
    [Google Scholar]
  16. Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H. & de Lange, T. ( 1999; ). Mammalian telomeres end in a large duplex loop. Cell 97, 503-514.[CrossRef]
    [Google Scholar]
  17. Halwachs-Baumann, G., Wilders-Truschnig, M., Desoye, G., Hahn, T., Kiesel, L., Klingel, K., Rieger, P., Jahn, G. & Sinzger, C. ( 1998; ). Human trophoblast cells are permissive to the complete replicative cycle of human cytomegalovirus. Journal of Virology 72, 7598-7602.
    [Google Scholar]
  18. Hart, H. & Norval, M. ( 1981; ). Association of human cytomegalovirus (HCMV) with mink and rabbit lung cells. Archives of Virology 67, 203-215.[CrossRef]
    [Google Scholar]
  19. Jacobs, J. P., Jones, C. M. & Baille, J. P. ( 1970; ). Characteristics of a human diploid cell designated MRC-5. Nature 227, 168-170.[CrossRef]
    [Google Scholar]
  20. Jiang, X. R., Jimenez, G., Chang, E., Frolkis, M., Kusler, B., Sage, M., Beeche, M., Bodnar, A. G., Wahl, G. M., Tlsty, T. D. & Chiu, C. P. ( 1999; ). Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nature Genetics 21, 111-114.[CrossRef]
    [Google Scholar]
  21. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L. & Shay, J. W. ( 1994; ). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015.[CrossRef]
    [Google Scholar]
  22. Kim, S. H., Kaminker, P. & Campisi, J. ( 1999; ). TIN2, a new regulator of telomere length in human cells. Nature Genetics 23, 405-412.[CrossRef]
    [Google Scholar]
  23. Kipling, D. (1995). The Telomere. Oxford: Oxford University Press.
  24. Knowles, W. A. ( 1976; ). In-vitro cultivation of human cytomegalovirus in thyroid epithelial cells. Archives of Virology 50, 119-124.[CrossRef]
    [Google Scholar]
  25. Koval, V., Clark, C., Vaishnav, M., Spector, S. A. & Spector, D. H. ( 1991; ). Human cytomegalovirus inhibits human immunodeficiency virus replication in cells productively infected by both viruses. Journal of Virology 65, 6969-6978.
    [Google Scholar]
  26. Langle-Rouault, F., Patzel, V., Benavente, A., Taillez, M., Silvestre, N., Bompard, A., Sczakiel, G., Jacobs, E. & Rittner, K. ( 1998; ). Up to 100-fold increase of apparent gene expression in the presence of Epstein–Barr virus oriP sequences and EBNA1: implications of the nuclear import of plasmids. Journal of Virology 72, 6181-6185.
    [Google Scholar]
  27. Li, B., Oestreich, S. & de Lange, T. ( 2000; ). Identification of human Rap1: implications for telomere evolution. Cell 101, 471-483.[CrossRef]
    [Google Scholar]
  28. Mazeron, M. C., Benjelloun, B., Bertrand, C., Pons, J. L. & Perol, Y. ( 1992; ). Comparison of MRC-5 and continuous cell lines for detection of cytomegalovirus in centrifugation cultures. Journal of Virological Methods 39, 311-317.[CrossRef]
    [Google Scholar]
  29. Morales, C. P., Holt, S. E., Ouellette, M., Kaur, K. J., Yan, Y., Wilson, K. S., White, M. A., Wright, W. E. & Shay, J. W. ( 1999; ). Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nature Genetics 21, 115-118.[CrossRef]
    [Google Scholar]
  30. Morgenstern, J. P. & Land, H. ( 1990; ). Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Research 18, 3587-3596.[CrossRef]
    [Google Scholar]
  31. Oram, J. D., Downing, R. G., Akrigg, A., Dollery, A. A., Duggleby, C. J., Wilkinson, G. W. G. & Greenaway, P. J. ( 1982; ). Use of recombinant plasmids to investigate the structure of the human cytomegalovirus genome. Journal of General Virology 59, 111-129.[CrossRef]
    [Google Scholar]
  32. Plachter, B., Sinzger, C. & Jahn, G. ( 1996; ). Cell types involved in replication and distribution of human cytomegalovirus. Advances in Virus Research 46, 195-261.
    [Google Scholar]
  33. Sinzger, C., Grefte, A., Plachter, B., Gouw, A. S. H., The, T. H. & Jahn, G. ( 1995; ). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. Journal of General Virology 76, 741-750.[CrossRef]
    [Google Scholar]
  34. Sinzger, C., Schmidt, K., Knapp, J., Kahl, M., Beck, R., Waldman, J., Hebart, H., Einsele, H. & Jahn, G. ( 1999; ). Modification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome. Journal of General Virology 80, 2867-2877.
    [Google Scholar]
  35. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. ( 1998; ). Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484-1487.[CrossRef]
    [Google Scholar]
  36. Soderberg-Naucler, C., Fish, K. N. & Nelson, J. A. ( 1997; ). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91, 119-126.[CrossRef]
    [Google Scholar]
  37. van Steensel, B. & de Lange, T. ( 1997; ). Control of telomere length by the human telomeric protein TRF1. Nature 385, 740-743.[CrossRef]
    [Google Scholar]
  38. van Steensel, B., Smogorzewska, A. & de Lange, T. ( 1998; ). TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401-413.[CrossRef]
    [Google Scholar]
  39. Weinrich, S. L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V. M., Holt, S. E., Bodnar, A. G., Lichtsteiner, S., Kim, N. W., Trager, J. B., Taylor, R. D., Carlos, R., Andrews, W. H., Wright, W. E., Shay, J. W., Harley, C. B. & Morin, G. B. ( 1997; ). Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genetics 17, 498-502.[CrossRef]
    [Google Scholar]
  40. Wyllie, F. S., Jones, C. J., Skinner, J. W., Haughton, M. F., Wallis, C., Wynford-Thomas, D., Faragher, R. G. & Kipling, D. ( 2000; ). Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nature Genetics 24, 16-17.[CrossRef]
    [Google Scholar]
  41. Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & Lange, T. ( 2000; ). Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genetics 25, 347-352.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-4-855
Loading
/content/journal/jgv/10.1099/0022-1317-82-4-855
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error