1887

Abstract

Cellular entry of human T-cell leukaemia virus type 1 (HTLV-1) was studied by a quantitative assay system using vesicular stomatitis virus (VSV) pseudotypes in which a recombinant VSV (VSVΔG*) containing the gene for green fluorescent protein instead of the VSV G protein gene was complemented with viral envelope glycoproteins . Most of the cell lines tested showed susceptibility to VSVΔG* complemented with either HTLV-1 envelope glycoproteins (VSVΔG*-Env) or VSV G protein (VSVΔG*-G), but not to VSVΔG* alone, indicating that cell-free HTLV-1 could infect many cell types from several species. High concentration pronase treatment of cells reduced their susceptibility to VSVΔG*-Env, while trypsin treatment, apparently, did not. Treatment of the cells with sodium periodate, heparinase, heparitinase, phospholipase A2 or phospholipase C reduced the susceptibility of cells to VSVΔG*-Env, but not to VSVΔG* complemented with measles virus (Edmonston strain) H and F proteins (VSVΔG*-EdHF), which was used as a control. Purified phosphatidylcholine also inhibited the infectivity of VSVΔG*-Env, but not VSVΔG*-G. These findings indicated that, in addition to cell surface proteins, glycosaminoglycans and phospholipids play an important role in the process of cell-free HTLV-1 entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-4-821
2001-04-01
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/4/0820821a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-4-821&mimeType=html&fmt=ahah

References

  1. Baba E., Nakamura M., Tanaka Y., Kuroki M., Itoyama Y., Nakano S., Niho Y.. 1993; Multiple neutralizing B-cell epitopes of human T-cell leukemia virus type 1 (HTLV-1) identified by human monoclonal antibodies. Journal of Immunology151:1013–1024
    [Google Scholar]
  2. Clapham P., Nagy K., Weiss R. A.. 1984; Pseudotypes of human T-cell leukemia virus types 1 and 2: neutralization by patients’ sera. Proceedings of the National Academy of Sciences, USA81:2886–2889
    [Google Scholar]
  3. Daenke S., McCracken S. A., Booth S.. 1999; Human T-cell leukaemia/lymphoma virus type 1 syncytium formation is regulated in a cell-specific manner by ICAM-1, ICAM-3 and VCAM-1 and can be inhibited by antibodies to integrin β2 or β7. Journal of General Virology80:1429–1436
    [Google Scholar]
  4. Delamarre L., Rosenberg A. R., Pique C., Pham D., Callebaut I., Dokhélar M.-C.. 1996; The HTLV-I envelope glycoproteins: structure and functions. Journal of Acquired Immune Deficiency Syndromes13 (Suppl. 1):85–91
    [Google Scholar]
  5. Delamarre L., Rosenberg A. R., Pique C., Pham D., Dokhélar M.-C.. 1997; A novel human T-cell leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity. Journal of Virology71:259–266
    [Google Scholar]
  6. Fan N., Gavalchin J., Paul B., Wells K. H., Lane M. J., Poiesz B. J.. 1992; Infection of peripheral blood mononuclear cells and cell lines by cell-free human T-cell lymphoma/leukemia virus type I. Journal of Virology30:905–910
    [Google Scholar]
  7. Feng Y., Broder C. C., Kennedy P. E., Berger E. A.. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science272:872–877
    [Google Scholar]
  8. Fukudome K., Furuse M., Imai T., Nishimura M., Takagi S., Hinuma Y., Yoshie O.. 1992; Identification of membrane antigen C33 recognized by monoclonal antibodies inhibitory to human-T-cell leukemia virus type 1 (HTLV-1)-induced syncytium formation: altered glycosylation of C33 antigen in HTLV-1-positive T cells. Journal of Virology66:1394–1401
    [Google Scholar]
  9. Hildreth J. E. K.. 1998; Syncytium-inhibiting monoclonal antibodies produced against human T-cell lymphotropic virus type 1-infected cells recognize class II major histocompatibility complex molecules and block by protein crowding. Journal of Virology72:9544–9552
    [Google Scholar]
  10. Hildreth J. E. K., Subramanium A., Hampton R. A.. 1997; Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology. Journal of Virology71:1173–1180
    [Google Scholar]
  11. Hino S., Yamaguchi K., Katamine S., Sugiyama H., Amagasaki T., Kinoshita K.-I., Yoshida Y., Doi H., Tsuji Y., Miyamoto T.. 1985; Mother-to-child transmission of human T-cell leukemia virus type I. Japanese Journal of Cancer Research76:474–480
    [Google Scholar]
  12. Hinuma Y., Nagata K., Hanaoka M., Nakai M., Matsumoto T., Kinoshita K.-I., Shirakawa S., Miyoshi I.. 1981; Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proceedings of the National Academy of Sciences, USA78:6476–6480
    [Google Scholar]
  13. Hoshino H., Clapham P. R., Weiss R. A., Miyoshi I., Yoshida M., Miwa M.. 1985; Human T-cell leukemia virus type I: pseudotype neutralization of Japanese and American isolates with human and rabbit sera. International Journal of Cancer36:671–675
    [Google Scholar]
  14. Ida H., Kurata A., Eguchi K., Yamashita I., Nakashima M., Sakai M., Kawabe Y., Nakamura T., Nagataki S.. 1994; Mechanism of inhibitory effect of dextran sulfate and heparin on human T-cell lymphotropic virus type I (HTLV-I)-induced syncytium formation in vitro: role of cell-to-cell contact. Antiviral Research23:143–159
    [Google Scholar]
  15. Kobe B., Center R. J., Kemp B. E., Poumbourios P.. 1999; Crystal structure of human T-cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proceedings of the National Academy of Sciences, USA96:4319–4324
    [Google Scholar]
  16. Krichbaum-Stenger K., Poiesz B. J., Keller P., Ehrlich G., Gavalchin J., Davis B. H., Moore J. L.. 1987; Specific adsorption of HTLV-I to various target human and animal cells. Blood70:1303–1311
    [Google Scholar]
  17. Mochizuki M., Watanabe T., Yamaguchi K., Tajima K., Yoshimura K., Nakashima S., Shirao M., Araki S., Miyata N., Mori S., Takatsuki K.. 1992; Uveitis associated with human T cell lymphotropic virus type I: seroepidemiologic, clinical, and virologic studies. Journal of Infectious Diseases166:943–944
    [Google Scholar]
  18. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D.. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Journal of Virology67:6025–6032
    [Google Scholar]
  19. Newbound G. C., Andrews J. M., O’Rourke J. P., Brady J. N., Lairmore M. D.. 1996; Human T-cell lymphotropic virus type 1 Tax mediates enhanced transcription in CD4+ T lymphocytes. Journal of Virology70:2101–2106
    [Google Scholar]
  20. Niwa H., Yamamura K., Miyazaki J.. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene108:193–200
    [Google Scholar]
  21. Nussbaum O., Broder C. C., Berger E. A.. 1994; Fusogenic mechanisms of enveloped-virus glycoproteins analysed by a novel recombinant vaccinia virus-based assay quantitating cell fusion dependent reporter gene activation. Journal of Virology68:5411–5422
    [Google Scholar]
  22. Okuma K., Nakamura M., Nakano S., Niho Y., Matsuura Y.. 1999; Host range of human T-cell leukemia virus type I analysed by a cell fusion-dependent reporter gene activation assay. Virology254:235–244
    [Google Scholar]
  23. Osame M., Matsumoto M., Usuku K., Izumo S., Ijichi N., Amitani H., Tara M., Igata A.. 1987; Chronic progressive myelopathy associated with elevated antibodies to human T lymphotropic virus type I and adult T-cell leukemia-like cells. Annals of Neurology21:117–122
    [Google Scholar]
  24. Owens R. J., Rose J. K.. 1993; Cytoplasmic domain requirement for incorporation of a foreign envelope protein into vesicular stomatitis virus. Journal of Virology67:360–365
    [Google Scholar]
  25. Pique C., Pham D., Tursz T., Dokhélar M.-C.. 1992; Human T-cell leukemia virus type I envelope protein maturation process: requirements for syncytium formation. Journal of Virology66:906–913
    [Google Scholar]
  26. Poiesz B. J., Ruscetti F. W., Gazdar A. F., Bunn P. A., Minna J. D., Gallo R. C.. 1980; Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proceedings of the National Academy of Sciences, USA77:7415–7419
    [Google Scholar]
  27. Poon B., Chen I. S. Y.. 1998; Identification of a domain within the human T-cell leukemia virus type 2 envelope required for syncytium induction and replication. Journal of Virology72:1959–1966
    [Google Scholar]
  28. Ragheb J. A., Yu H., Hofmann T., Anderson W. F.. 1995; The amphotropic and ecotropic murine leukemia virus envelope TM subunits are equivalent mediators of direct membrane fusion: implications for the role of the ecotropic envelope and receptor in syncytium formation and viral entry. Journal of Virology69:7205–7215
    [Google Scholar]
  29. Robert-Guroff M., Kalyanaraman V. S., Blattner W. A., Popovic M., Sarngadharan M. G., Maeda M., Blayney D., Catovsky D., Bunn P. A., Shibata A., Nakao Y., Ito Y., Aoki T., Gallo R. C.. 1983; Evidence for human T cell lymphoma-leukemia virus infection of family members of human T cell lymphoma-leukemia virus positive T cell leukemia-lymphoma patients. Journal of Experimental Medicine157:248–258
    [Google Scholar]
  30. Rose J. K., Bergmann J. E.. 1982; Expression from cloned cDNA of cell-surface secreted forms of the glycoprotein of vesicular stomatitis virus in eucaryotic cells. Cell30:753–762
    [Google Scholar]
  31. Sagara Y., Inoue Y., Shiraki H., Jinno A., Hoshino H., Maeda Y.. 1996; Identification and mapping of functional domains on human T-cell lymphotropic virus type 1 envelope proteins by using synthetic peptides. Journal of Virology70:1564–1569
    [Google Scholar]
  32. Sagara Y., Ishida C., Inoue Y., Shiraki H., Maeda Y.. 1997; Trypsin-sensitive and -resistant components in human T-cell membranes required for syncytium formation by human T-cell lymphotropic virus type 1-bearing cells. Journal of Virology71:601–607
    [Google Scholar]
  33. Schlegel R., Tralka T. S., Willingham M. C., Pastan I.. 1983; Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site?. Cell32:639–646
    [Google Scholar]
  34. Seiki M., Hattori S., Hirayama Y., Yoshida M.. 1983; Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proceedings of the National Academy of Sciences, USA80:3618–3622
    [Google Scholar]
  35. Shida H., Tochikura T., Sato T., Konno T., Hirayoshi K., Seki M., Ito Y., Hatanaka M., Hinuma Y., Sugimto M., Takahashi-Nishimaki F., Maruyama T., Miki K., Suzuki K., Morita M., Sashiyama H., Hayami M.. 1987; Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection. EMBO Journal6:3379–3384
    [Google Scholar]
  36. Sommerfelt M. A., Williams B. P., Clapham P. R., Solomon E., Goodfellow P. N., Weiss R. A.. 1988; Human T cell leukemia virus use a receptor determined by human chromosome 17. Science242:1557–1559
    [Google Scholar]
  37. Sutton R. E., Littman D. R.. 1996; Broad host range of human T-cell leukemia virus type 1 demonstrated with an improved pseudotyping system. Journal of Virology70:7322–7326
    [Google Scholar]
  38. Takada A., Robinson C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y.. 1997; A system for functional analysis of Ebola virus glycoprotein. Proceedings of the National Academy of Sciences, USA94:14764–14769
    [Google Scholar]
  39. Tanaka Y., Tanaka R., Terada E., Koyanagi Y., Miyano-Kurosaki N., Yamamoto N., Baba E., Nakamura M., Shida H.. 1994; Induction of antibody responses that neutralize human T-cell leukemia virus type I infection in vitro and in vivo by peptide immunization. Journal of Virology68:6323–6331
    [Google Scholar]
  40. Tanaka K., Xie M., Yanagi Y.. 1998; The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Archives of Virology143:213–225
    [Google Scholar]
  41. Tatsuo H., Okuma K., Tanaka K., Ono N., Minagawa H., Takade A., Matsuura Y., Yanagi Y.. 2000; Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. Journal of Virology74:4139–4145
    [Google Scholar]
  42. Trejo S. R., Ratner L.. 2000; The HTLV receptor is a widely expressed protein. Virology268:41–48
    [Google Scholar]
  43. Vile R. G., Schulz T. F., Danos O. F., Collins M. K. L., Weiss R. A.. 1991; A murine cell line producing HTLV-I pseudotype virions carrying a selectable marker gene. Virology180:420–424
    [Google Scholar]
  44. Wilson C., Reitz M. S., Okayama H., Eiden M. V.. 1989; Formation of infectious hybrid virions with Gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. Journal of Virology63:2374–2378
    [Google Scholar]
  45. Yang D.-W., Haraguchi Y., Iwai H., Handa A., Shimizu N., Hoshino H.. 1994; Inhibition of adsorption of human T-cell leukemia virus type 1 by a plant lectin, wheat-germ agglutinin. International Journal of Cancer56:100–105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-4-821
Loading
/content/journal/jgv/10.1099/0022-1317-82-4-821
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error