1887

Abstract

Wild-type strains of measles virus (MV) isolated in B95a cells use the signalling lymphocyte activation molecule (SLAM; also known as CD150) as a cellular receptor, whereas the Edmonston strain and its derivative vaccine strains can use both SLAM and the ubiquitously expressed CD46 as receptors. Among the major target cells for MV, lymphocytes and dendritic cells are known to express SLAM after activation, but monocytes have been reported to be SLAM-negative. In this study, SLAM expression on monocytes was examined under different conditions. When freshly isolated from the peripheral blood, monocytes did not express SLAM on the cell surface. However, monocytes became SLAM-positive after incubation with phytohaemagglutinin, bacterial lipopolysaccharide or MV. Anti-SLAM monoclonal antibodies efficiently blocked infection of activated monocytes with a wild-type strain of MV. These results indicate that SLAM is readily induced and acts as a monocyte receptor for MV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-12-2913
2001-12-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/12/0822913a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-12-2913&mimeType=html&fmt=ahah

References

  1. Aversa, G., Chang, C. C., Carballido, J. M., Cocks, B. G. & de Vries, J. E. ( 1997; ). Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent, cyclosporin A-sensitive T cell proliferation and IFN-γ production. Journal of Immunology 158, 4036-4044.
    [Google Scholar]
  2. Bartz, R., Firsching, R., Rima, B., ter Meulen, V. & Schneider-Schaulies, J. ( 1998; ). Differential receptor usage by measles virus strains. Journal of General Virology 79, 1015-1025.
    [Google Scholar]
  3. Borrow, P. & Oldstone, M. B. A. ( 1995; ). Measles virus–mononuclear cells interactions. Current Topics in Microbiology and Immunology 191, 85-100.
    [Google Scholar]
  4. Centers for Disease Control and Prevention ( 1999; ). Global measles control and regional elimination, 1998–1999. Morbidity and Mortality Weekly Report 48, 1124–1130.
    [Google Scholar]
  5. Cocks, B. G., Chang, C. C., Carballido, J. M., Yssel, H., de Vries, J. E. & Aversa, G. ( 1995; ). A novel receptor involved in T-cell activation. Nature 376, 260-263.[CrossRef]
    [Google Scholar]
  6. Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295-305.[CrossRef]
    [Google Scholar]
  7. Erlenhoefer, C., Wurzer, W. J., Löffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. Journal of Virology 75, 4499-4505.[CrossRef]
    [Google Scholar]
  8. Esolen, L. M., Ward, B. J., Moench, T. R. & Griffin, D. E. ( 1993; ). Infection of monocytes during measles. Journal of Infectious Diseases 168, 47-52.[CrossRef]
    [Google Scholar]
  9. Fugier-Vivier, I., Servet-Delprat, C., Rivailler, P., Rissoan, M. C., Liu, Y. J. & Rabourdin-Combe, C. ( 1997; ). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. Journal of Experimental Medicine 186, 813-823.[CrossRef]
    [Google Scholar]
  10. Griffin, D. E. & Bellini, W. J. ( 1996; ). Measles virus. In Fields Virology , pp. 1267-1312. Edited by B. N. Fields, D. M. Knipe, P. M. Howley, R. M. Chanock, J. L. Melnick, T. P. Monath, B. Roizman & S. E. Straus. Philadelphia:Lippincott–Raven.
  11. Grosjean, I., Caux, C., Bella, C., Berger, I., Wild, F., Banchereau, J. & Kaiserlian, D. ( 1997; ). Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. Journal of Experimental Medicine 186, 801-812.[CrossRef]
    [Google Scholar]
  12. Helin, E., Salmi, A. A., Vanharanta, R. & Vainionpää, R. ( 1999; ). Measles virus replication in cells of myelomonocytic lineage is dependent on cellular differentiation stage. Virology 253, 35-42.[CrossRef]
    [Google Scholar]
  13. Hsu, E. C., Sarangi, F., Iorio, C., Sidhu, M. S., Udem, S. A., Dillehay, D. L., Xu, W., Rota, P. A., Bellini, W. J. & Richardson, C. D. ( 1998; ). A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. Journal of Virology 72, 2905-2916.
    [Google Scholar]
  14. Hsu, E. C., Iorio, C., Sarangi, F., Khine, A. A. & Richardson, C. D. ( 2001; ). CDw150 (SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9-21.[CrossRef]
    [Google Scholar]
  15. Hyypiä, T., Korkiamäki, P. & Vainionpää, R. ( 1985; ). Replication of measles virus in human lymphocytes. Journal of Experimental Medicine 161, 1261-1271.[CrossRef]
    [Google Scholar]
  16. Joseph, B. S., Lampert, P. W. & Oldstone, M. B. ( 1975; ). Replication and persistence of measles virus in defined subpopulations of human leukocytes. Journal of Virology 16, 1638-1649.
    [Google Scholar]
  17. Kamahora, J. & Nii, S. ( 1965; ). Pathological and immunological studies of monkeys infected with measles virus. Archiv für die Gesamte Virusforschung 16, 161-167.[CrossRef]
    [Google Scholar]
  18. Karp, C. L., Wysocka, M., Wahl, L. M., Ahearn, J. M., Cuomo, P. J., Sherry, B., Trinchieri, G. & Griffin, D. E. ( 1996; ). Mechanism of suppression of cell-mediated immunity by measles virus. Science 273, 228-231.[CrossRef]
    [Google Scholar]
  19. Klagge, I. M. & Schneider-Schaulies, S. ( 1999; ). Virus interactions with dendritic cells. Journal of General Virology 80, 823-833.
    [Google Scholar]
  20. Kobune, F., Sakata, H. & Sugiura, A. ( 1990; ). Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. Journal of Virology 64, 700-705.
    [Google Scholar]
  21. Lecouturier, V., Fayolle, J., Caballero, M., Carabaña, J., Celma, M. L., Fernandez-Muñoz, R., Wild, T. F. & Buckland, R. ( 1996; ). Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. Journal of Virology 70, 4200-4204.
    [Google Scholar]
  22. Manchester, M., Eto, D. S., Valsamakis, A., Liton, P. B., Fernandez-Muñoz, R., Rota, P. A., Bellini, W. J., Forthal, D. N. & Oldstone, M. B. ( 2000a; ). Clinical isolates of measles virus use CD46 as a cellular receptor. Journal of Virology 74, 3967-3974.[CrossRef]
    [Google Scholar]
  23. Manchester, M., Naniche, D. & Stehle, T. ( 2000b; ). CD46 as a measles receptor: form follows function. Virology 274, 5-10.[CrossRef]
    [Google Scholar]
  24. Marie, J. C., Kehren, J., Trescol-Biémont, M.-C., Evlashev, A., Valentin, H., Walzer, T., Tedone, R., Loveland, B., Nicolas, J.-F., Rabourdine-Combe, C. & Horvat, B. ( 2001; ). Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 14, 69-79.[CrossRef]
    [Google Scholar]
  25. Minagawa, H. & Yanagi, Y. ( 2000; ). Latent herpes simplex virus-1 infection in SCID mice transferred with immune CD4+ T cells: a new model for latency. Archives of Virology 145, 2259-2272.[CrossRef]
    [Google Scholar]
  26. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Journal of Virology 67, 6025-6032.
    [Google Scholar]
  27. Ohgimoto, S., Ohgimoto, K., Niewiesk, S., Klagge, I. M., Pfeuffer, J., Johnston, I. C. D., Schneider-Schaulies, J., Weidmann, A., ter Meulen, V. & Schneider-Schaulies, S. ( 2001; ). The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. Journal of General Virology 82, 1835-1844.
    [Google Scholar]
  28. Ono, N., Tatsuo, H., Hidaka, Y., Aoki, T., Minagawa, H. & Yanagi, Y. ( 2001; ). Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. Journal of Virology 75, 4399-4401.[CrossRef]
    [Google Scholar]
  29. Polacino, P. S., Pinchuk, L. M., Sidorenko, S. P. & Clark, E. A. ( 1996; ). Immunodeficiency virus cDNA synthesis in resting T lymphocytes is regulated by T cell activation signals and dendritic cells. Journal of Medical Primatology 25, 201-209.[CrossRef]
    [Google Scholar]
  30. Salonen, R., Ilonen, J. & Salmi, A. ( 1988; ). Measles virus infection of unstimulated blood mononuclear cells in vitro: antigen expression and virus production preferentially in monocytes. Clinical and Experimental Immunology 71, 224-228.
    [Google Scholar]
  31. Schlender, J., Schnorr, J. J., Spielhoffer, P., Cathomen, T., Cattaneo, R., Billeter, M. A., ter Meulen, V. & Schneider-Schaulies, S. ( 1996; ). Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proceedings of the National Academy of Sciences, USA 93, 13194-13199.[CrossRef]
    [Google Scholar]
  32. Schneider-Schaulies, J. ( 2000; ). Cellular receptors for viruses: links to tropism and pathogenesis. Journal of General Virology 81, 1413-1429.
    [Google Scholar]
  33. Schnorr, J. J., Xanthakos, S., Keikavoussi, P., Kampgen, E., ter Meulen, V. & Schneider-Schaulies, S. ( 1997; ). Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proceedings of the National Academy of Sciences, USA 94, 5326-5331.[CrossRef]
    [Google Scholar]
  34. Sidorenko, S. P. & Clark, E. A. ( 1993; ). Characterization of a cell surface glycoprotein IPO-3, expressed on activated human B and T lymphocytes. Journal of Immunology 151, 4614-4624.
    [Google Scholar]
  35. Steineur, M. P., Grosjean, I., Bella, C. & Kaiserlian, D. ( 1998; ). Langerhans cells are susceptible to measles virus infection and actively suppress T cell proliferation. European Journal of Dermatology 8, 413-420.
    [Google Scholar]
  36. Takamizawa, M., Rivas, A., Fagnoni, F., Benike, C., Kosek, J., Hyakawa, H. & Engleman, E. G. ( 1997; ). Dendritic cells that process and present nominal antigens to naive T lymphocytes are derived from CD2+ precursors. Journal of Immunology 158, 2134-2142.
    [Google Scholar]
  37. Tanaka, K., Xie, M. & Yanagi, Y. ( 1998; ). The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Archives of Virology 143, 213-225.[CrossRef]
    [Google Scholar]
  38. Tatsuo, H., Okuma, K., Tanaka, K., Ono, N., Minagawa, H., Takade, A., Matsuura, Y. & Yanagi, Y. ( 2000a; ). Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. Journal of Virology 74, 4139-4145.[CrossRef]
    [Google Scholar]
  39. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000b; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893-897.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-12-2913
Loading
/content/journal/jgv/10.1099/0022-1317-82-12-2913
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error