1887

Abstract

This study describes the identification of the epitope recognized by the tobacco mosaic virus (TMV) coat protein (CP)-specific monoclonal antibody 29 (MAb29) by displaying a CP gene-fragment library on pVIII of filamentous phage M13. More than 80% of the clones isolated after one round of panning bound specifically to MAb29. DNA sequencing of ten randomly chosen MAb29-specific clones and subsequent sequence comparison revealed a common seven amino acid epitope (ELIRGTG) representing amino acids 131–137 of the TMV CP. The reactivity of MAb29 in competition ELISA towards glutathione -transferase fused to this epitope was stronger than that towards full-length wild-type TMV CP, confirming the epitope sequence determined by gene-fragment phage display. This demonstrated that gene-fragment libraries displayed on the phage surface as fusion proteins with the filamentous bacteriophage gene VIII are useful tools for rapid identification of linear epitopes recognized by MAbs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-1-9
2001-01-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/1/0820009a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-1-9&mimeType=html&fmt=ahah

References

  1. Al Moudallal Z., Briand J. P., Van Regenmortel M. H. V. 1982; Monoclonal antibodies as probes of the antigenic structure of tobacco mosaic virus. EMBO Journal 1:1005–1010
    [Google Scholar]
  2. Altschuh D., Lesk A. M., Bloomer A. C., Klug A. 1987; Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus. Journal of Molecular Biology 193:693–707
    [Google Scholar]
  3. Anderson S. 1981; Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Research 9:3015–3027
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 2000 Current Protocols in Molecular Biology New York: John Wiley;
  5. Bloomer A. C., Butler P. J. G. 1986; Tobacco mosaic virus – structure and self-assembly. In The Plant Viruses vol 2 pp 4–57 New York: Plenum;
    [Google Scholar]
  6. Böttger V., Stasiak P. C., Harrison D. L., Mellerick D. M., Lane E. B. 1995; Epitope mapping of monoclonal antibodies to keratin 19 using keratin fragments, synthetic peptides and phage peptide libraries. European Journal of Biochemistry 231:475–485
    [Google Scholar]
  7. Burritt J. B., Bond C. W., Doss K. W., Jesaitis A. J. 1996; Filamentous phage display of oligopeptide libraries. Analytical Biochemistry 238:1–13
    [Google Scholar]
  8. Cesareni G. 1992; Peptide display on filamentous phage capsids. A new powerful tool to study protein–ligand interaction. FEBS Letters 307:66–70
    [Google Scholar]
  9. Coligan J. E., Kruisbeek A. M., Margulies D. H., Shevach E. M., Strober W. 2000 Current Protocols in Immunology New York: John Wiley;
  10. Cortese R., Monaci P., Nicosia A., Luzzago A., Felici F., Galfre G., Pessi A., Tramontano A., Sollazzo M. 1995; Identification of biologically active peptides using random libraries displayed on phage. Current Opinion in Biotechnology 6:73–80
    [Google Scholar]
  11. Dore I., Altschuh D., Al Moudallal Z., Van Regenmortel M. H. 1987; Immunochemical studies of tobacco mosaic virus. VII. Use of comparative surface accessibility of residues in antigenically related viruses for delineating epitopes recognized by monoclonal antibodies. Molecular Immunology 24:1351–1358
    [Google Scholar]
  12. Dore I., Weiss E., Altschuh D., Van Regenmortel M. H. 1988; Visualization by electron microscopy of the location of tobacco mosaic virus epitopes reacting with monoclonal antibodies in enzyme immunoassay. Virology 162:279–289
    [Google Scholar]
  13. Fack F., Hugle-Dorr B., Song D., Queitsch I., Petersen G., Bautz E. K. 1997; Epitope mapping by phage display: random versus gene-fragment libraries. Journal of Immunology Methods 206:43–52
    [Google Scholar]
  14. Felici F., Castagnoli L., Musacchio A., Jappelli R., Cesareni G. 1991; Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. Journal of Molecular Biology 222:301–310
    [Google Scholar]
  15. Fischer R., Schumann D., Zimmermann S., Drossard J., Sack M., Schillberg S. 1999; Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. European Journal of Biochemistry 262:810–816
    [Google Scholar]
  16. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, USA 81:3998–4002
    [Google Scholar]
  17. Gupta S., Arora K., Sampath A., Khurana S., Singh S. S., Gupta A., Chaudhary V. K. 1999; Simplified gene-fragment phage display system for epitope mapping. Biotechniques 27:328–334
    [Google Scholar]
  18. Hämmerling G. J., Hämmerling U. 1981; Production of antibody-producing hybridomas in the rodent system. Research Monographs in Immunology 3:563–587
    [Google Scholar]
  19. Jacobsson K., Frykberg L. 1995; Cloning of ligand-binding domains of bacterial receptors by phage display. Biotechniques 18:878–885
    [Google Scholar]
  20. Jacobsson K., Frykberg L. 1996; Phage display shot-gun cloning of ligand-binding domains of prokaryotic receptors approaches 100% correct clones. Biotechniques 20:1070–1081
    [Google Scholar]
  21. Jacobsson K., Jonsson H., Lindmark H., Guss B., Lindberg M., Frykberg L. 1997; Shot-gun phage display mapping of two streptococcal cell-surface proteins. Microbiological Research 152:121–128
    [Google Scholar]
  22. Lane D. P., Stephen C. W. 1993; Epitope mapping using bacteriophage peptide libraries. Current Opinion in Immunology 5:268–271
    [Google Scholar]
  23. Luzzago A., Felici F., Tramontano A., Pessi A., Cortese R. 1993; Mimicking of discontinuous epitopes by phage-displayed peptides. I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene 128:51–57
    [Google Scholar]
  24. Schillberg S., Zimmermann S., Voss A., Fischer R. 1999; Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum . Transgenic Research 8:255–263
    [Google Scholar]
  25. Scott J. K., Smith G. P. 1990; Searching for peptide ligands with an epitope library. Science 249:386–390
    [Google Scholar]
  26. Sibille P., Strosberg A. D. 1997; A FIV epitope defined by a phage peptide library screened with a monoclonal anti-FIV antibody. Immunology Letters 59:133–137
    [Google Scholar]
  27. Smith G. P. 1991; Surface presentation of protein epitopes using bacteriophage expression systems. Current Opinion in Biotechnology 2:668–673
    [Google Scholar]
  28. Stephen C. W., Helminen P., Lane D. P. 1995; Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody–peptide interactions. Journal of Molecular Biology 248:58–78
    [Google Scholar]
  29. Tavladoraki P., Benvenuto E., Trinca S., De Martinis D., Cattaneo A., Galeffi P. 1993; Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472
    [Google Scholar]
  30. Valadon P., Scharff M. D. 1996; Enhancement of ELISAs for screening peptides in epitope phage display libraries. Journal of Immunology Methods 197:171–179
    [Google Scholar]
  31. Van Regenmortel M. H. V. 1981; Tobamoviruses. In Handbook of Plant Virus Infections and Comparative Diagnosis . pp 541–564 Edited by Kurstak E. Amsterdam: Elsevier/North Holland;
  32. Van Regenmortel M. H. 1999; The antigenicity of tobacco mosaic virus. Philosophical Transactions of the Royal Society of London Series B 354:559–568
    [Google Scholar]
  33. Verch T., Yusibov V., Koprowski H. 1998; Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. Journal of Immunology Methods 220:69–75
    [Google Scholar]
  34. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA. Methods in Enzymology 153:3–11
    [Google Scholar]
  35. Westerwoudt R. J. 1985; Improved fusion methods. IV. Technical aspects. Journal of Immunology Methods 77:181–196
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-82-1-9
Loading
/content/journal/jgv/10.1099/0022-1317-82-1-9
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error