1887

Abstract

Genes UL49 and UL48 of Marek’s disease virus 1 (MDV-1) strain RB1B, encoding the respective homologues of herpes simplex virus type 1 (HSV-1) genes VP22 and VP16, were cloned into a baculovirus vector. Seven anti-VP22 MAbs and one anti-VP16 MAb were generated and used to identify the tegument proteins in cells infected lytically with MDV-1. The two genes are known to be transcribed as a single bicistronic transcript, and the detection of only one of the two proteins (VP22) in MSB-1 lymphoma and in chicken embryo skin cells infected with MDV-1 prompted the study of the transcription/translation of the UL49–48 sequence in an and expression system. VP16 was expressed at detectable levels, whereas it could only be detected at a lower level in a more controlled environment. It was demonstrated that VP22 is phosphorylated in insect cells and possesses the remarkable property of being imported into all cells in a monolayer. VP22 localized rapidly and efficiently to nuclei, like its HSV-1 counterpart. The DNA-binding property of VP22 is also reported and a part of the region responsible for this activity was identified between aa 16 and 37 in the N-terminal region of the protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-9-2219
2000-09-01
2020-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/9/0812219a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-9-2219&mimeType=html&fmt=ahah

References

  1. Bennett E. R., Naujokas M., Hassell J. A.. 1989; Requirements for species-specific papovavirus DNA replication. Journal of Virology63:5371–5385
    [Google Scholar]
  2. Blaho J. A., Mitchell C., Roizman B.. 1994; An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products. Journal of Biological Chemistry269:17401–17410
    [Google Scholar]
  3. Bouhidel K., Terzian C., Pinon H.. 1994; The full-length transcript of the I factor, a LINE element of Drosophila melanogaster , is a potential bicistronic RNA messenger. Nucleic Acids Research22:2370–2374
    [Google Scholar]
  4. Brewis N., Phelan A., Webb J., Drew J., Elliott G., O’Hare P.. 2000; Evaluation of VP22 spread in tissue culture. Journal of Virology74:1051–1056
    [Google Scholar]
  5. Buckmaster A. E., Scott S. D., Sanderson M. J., Boursnell M. E. G., Ross N. L. J., Binns M. M.. 1988; Gene sequence and mapping data from Marek’s disease virus and herpesvirus of turkeys: implications for herpesvirus classification. Journal of General Virology69:2033–2042
    [Google Scholar]
  6. Campbell M. E. M., Palfreyman J. W., Preston C. M.. 1984; Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology180:1–19
    [Google Scholar]
  7. Cebrian J., Kaschka-Dierich C., Berthelot N., Sheldrick P.. 1982; Inverted repeat nucleotide sequences in the genomes of Marek disease virus and the herpesvirus of the turkey. Proceedings of the National Academy of Sciences, USA79:555–558
    [Google Scholar]
  8. Elliott G., O’Hare P.. 1997; Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell88:223–233
    [Google Scholar]
  9. Elliott G., O’Hare P.. 1998; Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. Journal of Virology72:6448–6455
    [Google Scholar]
  10. Elliott G., Mouzakitis G., O’Hare P.. 1995; VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. Journal of Virology69:7932–7941
    [Google Scholar]
  11. Elliott G., O’Reilly D., O’Hare P.. 1999; Identification of phosphorylation sites within the herpes simplex virus tegument protein VP22. Journal of Virology73:6203–6206
    [Google Scholar]
  12. Fenwick M. L., Walker M. J.. 1978; Suppression of the synthesis of cellular macromolecules by herpes simplex virus. Journal of General Virology41:37–51
    [Google Scholar]
  13. Fynan E. F., Ewert D. L., Block T. M.. 1993; Latency and reactivation of Marek’s disease virus in B lymphocytes transformed by avian leukosis virus. Journal of General Virology74:2163–2170
    [Google Scholar]
  14. Honess R. W., Roizman B.. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology14:8–19
    [Google Scholar]
  15. Izumiya Y., Jang H.-K., Kashiwase H., Cai J.-S., Nishimura Y., Tsushima Y., Kato K., Miyazawa T., Kai C., Mikami T.. 1998; Identification and transcriptional analysis of the homologues of the herpes simplex virus type 1 UL41 to UL51 genes in the genome of nononcogenic Marek’s disease virus serotype 2. Journal of General Virology79:1997–2001
    [Google Scholar]
  16. Joubert P., Pautigny C., Madelaine M.-F., Rasschaert D.. 2000; Identification of a new cleavage site of the 3C-like protease of rabbit haemorrhagic disease virus. Journal of General Virology81:481–488
    [Google Scholar]
  17. Kawaguchi T., Nomura K., Hirayama Y., Kitagawa T.. 1987; Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH. Cancer Research47:4460–4464
    [Google Scholar]
  18. Knopf K.-W., Kaerner H. C.. 1980; Virus-specific basic phosphoproteins associated with herpes simplex virus type 1 (HSV-1) particles and the chromatin of HSV-1-infected cells. Journal of General Virology46:405–414
    [Google Scholar]
  19. Kopacek J., Zelnik V., Brasseur R., Koptidesova D., Rejholcova O., Pastorekova S., Pastorek J.. 1997; Herpesvirus of turkeys homologue of HSV VP16 is structurally related to varicella zoster virus trans-inducing protein encoded by ORF 10. Virus Genes15:45–52
    [Google Scholar]
  20. Koptidesova D., Kopacek J., Zelnik V., Ross N. L. J., Pastorekova S., Pastorek J.. 1995; Identification and characterization of a cDNA clone derived from the Marek’s disease tumour cell line RPL1 encoding a homologue of α-transinducing factor (VP16) of HSV-1. Archives of Virology140:355–362
    [Google Scholar]
  21. Kozak M.. 1986; Bifunctional messenger RNAs in eukaryotes. Cell47:481–483
    [Google Scholar]
  22. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  23. Liang X., Chow B., Li Y., Raggo C., Yoo D., Attah-Poku S., Babiuk L. A.. 1995; Characterization of bovine herpesvirus 1 UL49 homolog gene and product: bovine herpesvirus 1 UL49 homolog is dispensable for virus growth. Journal of Virology69:3863–3867
    [Google Scholar]
  24. Morgenstern B.. 1999; DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics15:211–218
    [Google Scholar]
  25. Morrison E. E., Stevenson A. J., Wang Y.-F., Meredith D. M.. 1998; Differences in the intracellular localization and fate of herpes simplex virus tegument proteins early in the infection of Vero cells. Journal of General Virology79:2517–2528
    [Google Scholar]
  26. O’Reilly D. R., Miller L. K., Luckow V. A.. 1992; Baculovirus Expression Vectors New York: W. H. Freeman;
    [Google Scholar]
  27. Overton H., McMillan D., Hope L., Wong-Kai-In P.. 1994; Production of host shutoff-defective mutants of herpes simplex virus type 1 by inactivation of the UL13 gene. Virology202:97–106
    [Google Scholar]
  28. Sharma J. M., Kenzy S. G., Rissberger A.. 1969; Propagation and behavior in chicken kidney cultures of the agent associated with classical Marek’s disease. Journal of the National Cancer Institute43:907–916
    [Google Scholar]
  29. Shulman M., Wilde C. D., Köhler G.. 1978; A better cell line for making hybridomas secreting specific antibodies. Nature276:269–270
    [Google Scholar]
  30. Silim A., El Azhary M. A. S. Y., Roy R. S.. 1981; A simple technique for preparation of chicken-embryo-skin cell cultures. Avian Diseases26:182–185
    [Google Scholar]
  31. Smibert C. A., Popova B., Xiao P., Capone J. P., Smiley J. R.. 1994; Herpes simplex virus VP16 forms a complex with the virion host shutoff protein vhs. Journal of Virology68:2339–2346
    [Google Scholar]
  32. Sodeik B., Ebersold M. W., Helenius A.. 1997; Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. Journal of Cellular Biology136:1007–1021
    [Google Scholar]
  33. Spear P. G., Roizman B.. 1972; Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpesvirion. Journal of Virology9:143–159
    [Google Scholar]
  34. Sutter G., Ohlmann M., Erfle V.. 1995; Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Letters371:9–12
    [Google Scholar]
  35. Thouvenin E., Laurent S., Madelaine M.-F., Rasschaert D., Vautherot J.-F., Hewat E. A.. 1997; Bivalent binding of a neutralising antibody to a calicivirus involves the torsional flexibility of the antibody hinge. Journal of Molecular Biology270:238–246
    [Google Scholar]
  36. Trus B. L., Gibson W., Cheng N., Steven A. C.. 1999; Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. Journal of Virology73:2181–2192
    [Google Scholar]
  37. Vautherot J.-F., Laporte J.. 1983; Utilization of monoclonal antibodies for antigenic characterization of coronaviruses. Annales de Recherches Vétérinaires14:437–444
    [Google Scholar]
  38. Vautherot J.-F., Madelaine M.-F., Boireau P., Laporte J.. 1992; Bovine coronavirus peplomer glycoproteins: detailed antigenic analyses of S1, S2 and HE. Journal of General Virology73:1725–1737
    [Google Scholar]
  39. Wang F., Petti L., Braun D., Seung S., Kieff E.. 1987; A bicistronic Epstein–Barr virus mRNA encodes two nuclear proteins in latently infected, growth-transformed lymphocytes. Journal of Virology61:945–954
    [Google Scholar]
  40. Yanagida N., Yoshida S., Nazerian K., Lee L. F.. 1993; Nucleotide and predicted amino acid sequences of Marek’s disease virus homologues of herpes simplex virus major tegument proteins. Journal of General Virology74:1837–1845
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-9-2219
Loading
/content/journal/jgv/10.1099/0022-1317-81-9-2219
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error