Human parechoviruses 1 and 2 (HPEV1 and HPEV2, respectively), formerly known as echoviruses 22 and 23, have been assigned to a novel picornavirus genus on the basis of their distinct molecular and biological properties. To study the immunological characteristics of HPEV1 capsid proteins, antigenic analysis was carried out by a peptide scanning technique, which can be used to identify the immunogenic peptide sequences of a protein. Partially overlapping peptides, representing the capsid of HPEV1, were synthesized using a 12 aa window in a three residue shift and reactivity of rabbit and murine HPEV1 antisera against these peptides were tested. Using this method, an antigenic site in the VP0 polypeptide, recognized by both rabbit and murine antisera, was identified. The sequence of this region was conserved among HPEV1 clinical isolates obtained from Finland and the United States. Antiserum against this peptide region showed neutralizing activity against HPEV1 in cell culture. Because the C-terminal region of HPEV1 VP1 contains a functional RGD motif, the antigenicity of this region was also tested. By using the corresponding peptide antiserum, neutralization of HPEV1 was observed. Cross-neutralization between HPEV1 and coxsackievirus A9, an enterovirus with a similar RGD motif in VP1, was also detected.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abraham, G. & Colonno, R. J. (1984). Many rhinovirus serotypes share the same cellular receptor. Journal of Virology 51, 340-345. [Google Scholar]
  2. Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. & Brown, F. (1989). The three-dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution. Nature 327, 709-716. [Google Scholar]
  3. Appleyard, G., Russell, S. M., Clarke, B. E., Speller, S. A., Trowbridge, M. & Vadolas, J. (1990). Neutralization epitopes of human rhinovirus type 2. Journal of General Virology 71, 1275-1282.[CrossRef] [Google Scholar]
  4. Chang, K. H., Day, C., Walker, J., Hyypiä, T. & Stanway, G. (1992). The nucleotide sequences of wild-type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. Journal of General Virology 73, 621-626.[CrossRef] [Google Scholar]
  5. Figueroa, J. P., Ashley, D., King, D. & Hull, B. (1989). An outbreak of acute flaccid paralysis in Jamaica associated with echovirus type 22. Journal of Medical Virology 29, 315-319.[CrossRef] [Google Scholar]
  6. Fox, G., Parry, N. R., Barnett, P. V., McGinn, B., Rowlands, D. J. & Brown, F. (1989). The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine–glycine–aspartic acid). Journal of General Virology 70, 625-637.[CrossRef] [Google Scholar]
  7. Frank, R. (1992). Spot-Synthesis: an easy technique for positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217-9232.[CrossRef] [Google Scholar]
  8. Ghazi, F., Hughes, P. J., Hyypiä, T. & Stanway, G. (1998). Molecular analysis of human parechovirus 2 (formerly echovirus 23). Journal of General Virology 79, 2641-2650. [Google Scholar]
  9. Grist, N. R., Bell, E. J. & Assaad, F. (1978). Enteroviruses in human disease. Progress in Medical Virology 24, 114-157. [Google Scholar]
  10. Hendry, E., Hatanaka, H., Fry, E., Smyth, M., Tate, J., Stanway, G., Santti, J., Maaronen, M., Hyypiä, T. & Stuart, D. (1999). The crystal structure of coxsackievirus A9 to 2·9 Å resolution. Structure 7, 1527-1538.[CrossRef] [Google Scholar]
  11. Hogle, J. M., Chow, M. & Filman, D. J. (1985). Three-dimensional structure of poliovirus at 2·9 Å resolution. Science 229, 1358-1365.[CrossRef] [Google Scholar]
  12. Hovi, T. & Roivainen, M. (1993). Peptide antisera targeted to a conserved sequence in poliovirus capsid protein VP1 cross-react widely with members of the genus enterovirus. Journal of Clinical Microbiology 31, 1083-1087. [Google Scholar]
  13. Hughes, P. J., Horsnell, C., Hyypiä, T. & Stanway, G. (1995). The coxsackievirus A9 RGD motif is not essential for virus viability. Journal of Virology 69, 8035-8040. [Google Scholar]
  14. Hyypiä, T., Horsnell, C., Maaronen, M., Khan, M., Kalkkinen, N., Auvinen, P., Kinnunen, L. & Stanway, G. (1992). A distinct picornavirus group identified by sequence analysis. Proceedings of the National Academy of Sciences USA 89, 8847-8851.[CrossRef] [Google Scholar]
  15. Jamison, R. M. (1974). An electron microscopic study of the intracellular development of echovirus 22. Archiv für die Gesamte Virusforschung 44, 184-194.[CrossRef] [Google Scholar]
  16. Joki-Korpela, P. & Hyypiä, T. (1998). Diagnosis and epidemiology of echovirus 22 infections. Clinical Infectious Disease 26, 129-136. [Google Scholar]
  17. Kim, B. S., Yong-Kyung, C., Crane, M. A. & Jue, C. J. (1992). Identification and localization of a limited number of predominant conformation-independent antibody epitopes of Theiler’s murine encephalomyelitis virus. Immunology Letters 31, 199-206.[CrossRef] [Google Scholar]
  18. Koskiniemi, M., Paetau, R. & Linnavuori, K. (1989). Severe encephalitis associated with disseminated echovirus 22 infection. Scandinavian Journal of Infectious Diseases 21, 463-466.[CrossRef] [Google Scholar]
  19. Leinonen, M. (1985). Serological methods for the study of bacterial surface antigens. In Enterobacterial Surface Antigens: Methods for Molecular Characterization, pp. 179-206. Edited by T. K. Korhonen, E. A. Dawes & P. H. Mäkelä. Amsterdam: Elsevier.
  20. Luo, M., Vriend, G., Kamer, G., Minor, I., Arnold, E., Rossmann, M. G., Boege, U., Scraba, D. G., Duke, G. M. & Palmenberg, A. C. (1987). The atomic structure of Mengo virus at 3·0 Å resolution. Science 235, 182-191.[CrossRef] [Google Scholar]
  21. Maller, H. M., Powars, D. F., Horowiz, R. E. & Portnoy, P. (1967). Fatal myocarditis associated with ECHO virus type 22 infection in a child with apparent immunological deficiency. Journal of Pediatrics 71, 204-210.[CrossRef] [Google Scholar]
  22. Mateu, M. (1995). Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Research 38, 1-24.[CrossRef] [Google Scholar]
  23. Mateu, M., Valero, M. L., Andreu, D. & Domingo, E. (1996). Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus: effect on cell recognition. Journal of Biological Chemistry 271, 12814-12819.[CrossRef] [Google Scholar]
  24. Minor, P., Ferguson, M., Evans, D. M. A., Almond, J. W. & Icenogle, J. P. (1986). Antigenic structure of polioviruses of serotypes 1, 2 and 3. Journal of General Virology 67, 1283-1291.[CrossRef] [Google Scholar]
  25. Niklasson, B., Kinnunen, L., Hörnfeldt, B., Hörling, J., Benemar, C., Hedlund, K. O., Matskova, L., Hyypiä, T. & Winberg, G. (1999). A new picornavirus isolated from bank voles (Clethrionomys glareolus). Virology 255, 86-93.[CrossRef] [Google Scholar]
  26. Oberste, M. S., Maher, K. & Pallansch, M. A. (1998). Complete sequence of echovirus 23 and its relationship to echovirus 22 and other human enteroviruses. Virus Research 56, 217-223.[CrossRef] [Google Scholar]
  27. Pulli, T., Koivunen, E. & Hyypiä, T. (1997). Cell-surface interactions of echovirus 22. Journal of Biological Chemistry 272, 21176-21180.[CrossRef] [Google Scholar]
  28. Pulli, T., Lankinen, H., Roivainen, M. & Hyypiä, T. (1998a). Antigenic sites of coxsackievirus A9. Virology 240, 202-212.[CrossRef] [Google Scholar]
  29. Pulli, T., Roivainen, M., Hovi, T. & Hyypiä, T. (1998b). Induction of neutralizing antibodies by synthetic peptides representing the C terminus of coxsackievirus A9 capsid protein VP1.Journal of General Virology 79, 2249-2253. [Google Scholar]
  30. Roivainen, M., Hyypiä, T., Piirainen, L., Kalkkinen, N., Stanway, G. & Hovi, T. (1991a). RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 by intestinal proteases.Journal of Virology 65, 4735-4740. [Google Scholar]
  31. Roivainen, M., Närvänen, A., Korkolainen, M., Huhtala, M.-L. & Hovi, T. (1991b). Antigenic regions of poliovirus type 3/Sabin capsid proteins recognized by human sera in the peptide scanning technique.Virology 180, 99-107.[CrossRef] [Google Scholar]
  32. Roivainen, M., Piirainen, L., Rysä, T., Närvänen, A. & Hovi, T. (1993). An immunodominant N-terminal region of VP1 that is buried in crystal structure can be exposed in solution. Virology 195, 762-765.[CrossRef] [Google Scholar]
  33. Roivainen, M., Piirainen, L., Hovi, T., Virtanen, I., Riikonen, T., Heino, J. & Hyypiä, T. (1994). Entry of coxsackievirus A9 into host cells: specific interactions with αvβ3 integrin, the vitronectin receptor. Virology 203, 357-365.[CrossRef] [Google Scholar]
  34. Roivainen, M., Piirainen, L. & Hovi, T. (1996). Efficient RGD-independent entry process of coxsackievirus A9. Archives of Virology 141, 1909-1919.[CrossRef] [Google Scholar]
  35. Rossmann, M. G., Arnold, E., Erickson, J. W., Franckenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B. & Vriend, G. (1985). Structure of the human common cold virus and functional relationship to other picornaviruses. Nature 317, 145-153.[CrossRef] [Google Scholar]
  36. Ruoslahti, E. & Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science 238, 491-493.[CrossRef] [Google Scholar]
  37. Russell, S. J. M. & Bell, E. J. (1970). Echoviruses and carditis. Lancet i 784–785.
  38. Santti, J., Harvala, H., Kinnunen, L. & Hyypiä, T. (2000). Molecular epidemiology of coxsackievirus A9. Journal of General Virology 81, 1361-1372. [Google Scholar]
  39. Sato, N., Sato, H., Kawana, R. & Matumoto, M. (1972). Ecological behavior of coxsackie B and 29 ECHO serotypes as revealed by serologic survey of general population in Aomori, Japan. Journal of Medical Sciences and Biology 25, 355-368. [Google Scholar]
  40. Shaver, D. N., Barron, A. L. & Karzon, D. T. (1961). Distinctive cytopathology of ECHO viruses types 22 and 23.Proceedings of the Society for Experimental Medicine and Biology 106, 648-652.[CrossRef] [Google Scholar]
  41. Sherry, B., Mosser, A. G., Colonno, R. J. & Rueckert, R. R. (1986). Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14.Journal of Virology 57, 246-257. [Google Scholar]
  42. Stanway, G. & Hyypiä, T. (1999). Parechoviruses. Journal of Virology 73, 5249-5254. [Google Scholar]
  43. Stanway, G., Kalkkinen, N., Roivainen, M., Ghazi, F., Khan, M., Smyth, M., Meurman, O. & Hyypiä, T. (1994). Molecular and biological characteristics of echovirus 22 – a representative of a new picornavirus group.Journal of Virology 68, 8232-8238. [Google Scholar]
  44. Stanway, G., Joki-Korpela, P. & Hyypiä, T. (2000). Human parechoviruses – biology and clinical importance. Reviews in Medical Virology 10, 57-69.[CrossRef] [Google Scholar]
  45. Usherwood, E. J. & Nash, A. A. (1995). Lymphocyte recognition of picornaviruses. Journal of General Virology 76, 499-508.[CrossRef] [Google Scholar]
  46. Verdaguer, N., Mateu, M. G., Andreu, D., Giralt, E., Domingo, E. & Fita, I. (1995). Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO Journal 14, 1690-1696. [Google Scholar]
  47. Wigand, R. & Sabin, A. B. (1961). Properties of ECHO types 22, 23 and 24 viruses. Archives für die Gesamte Virusforschung 11, 224-247.[CrossRef] [Google Scholar]
  48. Zimmermann, H., Eggers, H. J., Zimmermann, A., Kraus, W. & Nelsen-Salz, B. (1995). Complete nucleotide sequence and biological properties of an infectious clone of prototype echovirus 9. Virus Research 39, 311-319.[CrossRef] [Google Scholar]
  49. Zimmermann, H., Eggers, H. J. & Nelsen-Salz, B. (1996). Molecular cloning and sequence determination of the complete genome of the virulent echovirus 9 strain Barty. Virus Genes 12, 149-154.[CrossRef] [Google Scholar]
  50. Zimmermann, H., Eggers, H. J. & Nelsen-Salz, B. (1997). Cell attachment and mouse virulence of echovirus 9 correlate with an RGD motif in the capsid protein VP1. Virology 233, 149-156.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error