Expression of glycoprotein D (gD) of alphaherpesviruses protects cells from superinfection by homologous and heterologous viruses by a mechanism termed interference. We recently showed that MDBK cells expressing bovine herpesvirus (BHV)-1gD (MDBK) resist BHV-1, pseudorabies virus (PRV) and herpes simplex virus-1 (HSV-1) but not the more closely related BHV-5 infection as determined by the number of plaques produced. However, the plaque size is reduced in all four viral infections suggesting a block in cell-to-cell transmission. Here, we show that MDBK cells expressing truncated BHV-1 gD, designated MDBK, secreted soluble gD and were fully susceptible to infection by all the four viruses when the cells were washed prior to infection. When MDBK cells or MDBK cells were treated with medium containing truncated gD prior to infection, they partially resisted BHV-1, PRV and HSV-1 but not BHV-5. Interestingly, both BHV-1 and BHV-5 formed normal-sized plaques in MDBK cells suggesting that the viruses were able to spread efficiently. Thus BHV-1 gD is required at the cell surface at the time of infection in order to block BHV-1, HSV-1 and PRV infections, consistent with a common coreceptor for the three gDs.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abdelmagid, O. Y., Minocha, H. C., Collins, J. K. & Chowdhury, S. I. (1995). Fine mapping of bovine herpesvirus-1 (BHV-1) glycoprotein D (gD) neutralizing epitopes by type-specific monoclonal antibodies and sequence comparison with BHV-5 gD. Virology 206, 242-253.[CrossRef] [Google Scholar]
  2. Brandimarti, R., Huang, T., Roizman, B. & Campadelli-Fiume, G. (1994). Mapping of herpes simplex virus 1 genes with mutations which overcome host restrictions to infection. Proceedings of the National Academy of Sciences, USA 91, 5406-5410.[CrossRef] [Google Scholar]
  3. Brewer, C. B. & Roth, M. G. (1991). A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza viral hemagglutinin. Journal of Cell Biology 114, 413-421.[CrossRef] [Google Scholar]
  4. Brunetti, C. R., Burke, R. L., Kornfeld, S., Gregory, W., Dingwell, K. S., Masiarz, F. & Johnson, D. C. (1994). Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. Journal of Biological Chemistry 269, 17067-17074. [Google Scholar]
  5. Brunetti, C. R., Burke, R. L., Hoflack, B., Ludwig, T., Dingwell, K. S. & Johnson, D. C. (1995). Role of mannose 6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission. Journal of Virology 69, 3517-3528. [Google Scholar]
  6. Campadelli-Fiume, G., Arsenakis, M., Farabegoli, F. & Roizman, B. (1988). Entry of herpes simplex virus 1 in BJ cells that constitutively express viral glycoprotein D is by endocytosis and results in degradation of the virus. Journal of Virology 62, 159-167. [Google Scholar]
  7. Campadelli-Fiume, G., Qi, S., Avitabile, E., Foa-Tomasi, L., Brandimarti, R. & Roizman, B. (1990). Glycoprotein D of herpes simplex virus encodes a domain which precludes penetration of cells expressing the glycoprotein by superinfecting herpes simplex virus. Journal of Virology 64, 6070-6079. [Google Scholar]
  8. Chase, C. C. L. & Letchworth, G. J. (1994). Bovine herpesvirus 1 gIV-expressing cells resist virus penetration. Journal of General Virology 75, 177-181.[CrossRef] [Google Scholar]
  9. Chase, C. C. L., Carter-Allen, K., Lohff, C. & Letchworth, G. J. (1990). Bovine cells expressing bovine herpesvirus 1 (BHV1) glycoprotein IV resist infection by BHV1, herpes simplex virus and pseudorabies virus. Journal of Virology 64, 4866-4872. [Google Scholar]
  10. Chase, C. C. L., Lohff, C. & Letchworth, G. J. (1993). Resistance and susceptibility of bovine cells expressing herpesviral glycoprotein D homologs to herpesviral infection. Virology 194, 365-369.[CrossRef] [Google Scholar]
  11. Cocchi, F., Menotti, L., Mirandola, P., Lopez, M. & Campadelli-Fiume, G. (1998). The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. Journal of Virology 72, 9992-10002. [Google Scholar]
  12. Collawn, J. F., Stangel, M., Kuhn, L. A., Esekogwu, V., Jing, S., Trowbridge, I. S. & Tainer, J. A. (1990). Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63, 1061-1072.[CrossRef] [Google Scholar]
  13. Dasika, G. K. & Letchworth, G. J. (1999). Cellular expression of bovine herpesvirus 1 gD inhibits cell-to-cell spread of two closely related viruses without blocking their primary infection. Virology 254, 24-36.[CrossRef] [Google Scholar]
  14. Dean, H. J., Terhune, S., Sheih, M.-T., Susmarski, N. & Spear, P. G. (1994). Single amino acid substitutions in gD of herpes simplex virus 1 confer resistance to gD-mediated interference and cause cell type-dependent alterations in infectivity. Virology 199, 67-80.[CrossRef] [Google Scholar]
  15. Dean, H. J., Warner, M. S., Terhune, S. S., Johnson, R. M. & Spear, P. G. (1995). Viral determinants of the variable sensitivity of herpes simplex virus strains to gD-mediated interference. Journal of Virology 69, 5171-5176. [Google Scholar]
  16. Eberle, W., Sander, C., Klaus, W., Schmidt, B., von Figura, K. & Peters, C. (1991). The essential tyrosine of the internalization signal in lysosomal acid phosphatase is part of a beta turn. Cell 67, 1203-1209.[CrossRef] [Google Scholar]
  17. Engels, M., Giuliani, C., Wild, P., Beck, T. M., Loepfe, E. & Wyler, R. (1986). The genome of bovine herpesvirus 1 (BHV-1) exhibiting a neuropathogenic potential compared to known BHV-1 strains by restriction site mapping and cross-hybridization. Virus Research 6, 57-73.[CrossRef] [Google Scholar]
  18. Fehler, F., Herrmann, J. M., Saalmuller, A., Mettenleiter, T. C. & Keil, G. M. (1992). glycoprotein IV of bovine herpesvirus 1-expressing cell line complements and rescues a conditionally lethal viral mutant. Journal of Virology 66, 831-839. [Google Scholar]
  19. Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. & Spear, P. G. (1998). Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280, 1618-1620.[CrossRef] [Google Scholar]
  20. Huang, T. & Campadelli-Fiume, G. (1996). Anti-idiotypic antibodies mimicking glycoprotein D of herpes simplex virus identify a cellular protein required for virus spread from cell to cell and virus induced polykaryocytosis. Proceedings of the National Academy of Sciences, USA 93, 1836-1840.[CrossRef] [Google Scholar]
  21. Johnson, R. M. & Spear, P. G. (1989). Herpes simplex virus glycoprotein D mediates interference with herpes simplex virus infection. Journal of Virology 63, 819-827. [Google Scholar]
  22. Johnson, D. C., Burke, R. L. & Gregory, T. (1990). Soluble forms of herpes simplex virus glycoprotein D bind to a limited number of cell surface receptors and inhibit virus entry into cells. Journal of Virology 64, 2569-2576. [Google Scholar]
  23. Krummenacher, C., Nicola, A. V., Whitbeck, J. C., Lou, H., Hou, W., Lambris, J. D., Geraghty, R. J., Spear, P. G., Cohen, G. H. & Eisenberg, R. J. (1998). Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. Journal of Virology 72, 7064-7074. [Google Scholar]
  24. Le Gall, A. H., Yeaman, C., Muesch, A. & Rodriguez-Boulan, E. (1995). Epithelial cell polarity: new perspectives. Seminars in Nephrology 15, 272-284. [Google Scholar]
  25. Li, Y., van Drunen Littel-van den Hurk, S., Babiuk, L. A. & Liang, X. (1995). Characterization of cell-binding properties of bovine herpesvirus 1 glycoproteins B, C, and D: identification of a dual cell-binding function of gB. Journal of Virology 69, 4758-4768. [Google Scholar]
  26. Ligas, M. W. & Johnson, D. C. (1988). A herpes simplex virus mutant in which glycoprotein D sequences are replaced by β galactosidase sequences binds to but is unable to penetrate into cells. Journal of Virology 62, 1486-1494. [Google Scholar]
  27. Ludwig, H. (1983). Bovine herpesviruses. In The Herpesviruses, pp. 135-214. Edited by B. Roizman. New York: Plenum.
  28. Marshall, R. L., Rodriguez, L. L. & Letchworth, G. J. (1986). Characterization of the envelope proteins of infectious bovine rhinotracheitis virus (bovine herpesvirus 1) by biochemical and immunological methods. Journal of Virology 57, 745-753. [Google Scholar]
  29. Montgomery, R. I., Warner, M. S., Lum, B. J. & Spear, P. G. (1996). Herpes simplex virus entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427-436.[CrossRef] [Google Scholar]
  30. Nicola, A. V., Willis, S. H., Naidoo, N. A., Eisenberg, R. J. & Cohen, G. H. (1996). Structure-function analysis of soluble forms of herpes simplex virus glycoprotein D. Journal of Virology 70, 3815-3822. [Google Scholar]
  31. Petrovskis, E. A., Meyer, A. L. & Post, L. E. (1988). Reduced yield of infectious pseudorabies virus and herpes simplex virus from cell lines producing viral glycoprotein gp50. Journal of Virology 62, 2196-2199. [Google Scholar]
  32. Rauh, I. & Mettenleiter, T. C. (1991). Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. Virology 65, 5348-5356. [Google Scholar]
  33. Rodriguez-Boulan, E. & Zurzolo, C. (1993). Polarity signals in epithelial cells. Journal of Cell Science (Suppl.)17, 9–12.
  34. Roizman, B., Desrosiers, R. C., Fleckenstein, B., Loprez, C., Minson, A. C. & Studdert, M. J. (1992). The family herpesviridae, an update. Archives of Virology 123, 425-449.[CrossRef] [Google Scholar]
  35. Spear, P. G. (1993a). Entry of alphaherpesviruses into cells. Seminars in Virology 4, 167-180.[CrossRef] [Google Scholar]
  36. Spear, P. G. (1993b). Membrane fusion induced by herpes simplex virus. In Viral Fusion Mechanisms, pp. 201-232. Edited by J. Bentz. Boca Raton: CRC Press.
  37. Spear, P. G., Shieh, M.-T., Herold, B. C., WuDunn, D. & Koshy, T. I. (1992). Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. In Heparin and Related Polysaccharides, pp. 341-353. Edited by D. A. Lane. New York: Plenum.
  38. Srinivas, R. V., Balachandran, N., Alonso-Caplen, F. V. & Compans, R. W. (1986). Expression of herpes simplex virus glycoproteins in polarized epithelial cells. Journal of Virology 58, 689-693. [Google Scholar]
  39. Thaker, S. R., Stine, D. L., Zamb, T. J. & Srikumaran, S. (1994). Identification of a putative cellular receptor for bovine herpesvirus 1. Journal of General Virology 75, 2303-2309.[CrossRef] [Google Scholar]
  40. Thomas, D. C., Brewer, C. B. & Roth, M. G. (1993). Vesicular stomatitis virus glycoprotein contains a dominant cytoplasmic basolateral sorting signal critically dependent upon a tyrosine. Journal of Biological Chemistry 268, 3313-3320. [Google Scholar]
  41. Tikoo, S. K., Fitzpatrick, D. R., Babiuk, L. A. & Zamb, T. J. (1990). Molecular cloning, sequencing, and expression of functional bovine herpesvirus 1 glycoprotein IV in transfected bovine cells. Journal of Virology 64, 5132-5142. [Google Scholar]
  42. Warner, M. S., Geraghty, R. J., Martinez, W. M., Montgomery, R. I., Whitbeck, J. C., Xu, R., Eisenberg, R. J., Cohen, G. H. & Spear, P. G. (1998). A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246, 179-189.[CrossRef] [Google Scholar]
  43. Weiss, R. A. (1993). Cellular receptors and viral glycoproteins involved in retrovirus entry. In The Retroviridae, pp. 1-108. Edited by J. Levy. New York: Plenum.
  44. Whitbeck, J. C., Peng, C., Lou, H., Xu, R., Willis, S. H., Ponce de Leon, M., Peng, T., Nicola, A. V., Montgomery, R. I., Warner, M. S., Soulika, A. M., Spruce, L. A., Moore, W. T., Lambris, J. D., Spear, P. G., Cohen, G. H. & Eisenberg, R. J. (1997). Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. Journal of Virology 71, 6083-6093. [Google Scholar]
  45. Yates, W. D. G. (1982). A review of infectious bovine rhinotracheitis, shipping fever pneumonia and viral–bacterial synergism in respiratory disease of cattle. Canadian Journal of Comparative Medicine 46, 225-263. [Google Scholar]
  46. Zhu, X. & Letchworth, G. J. (1996). Mucosal and systemic immunity to bovine herpesvirus-1 glycoprotein D confer resistance to viral replication and latency. Vaccine 14, 61-69.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error