1887

Abstract

The bisegmented genome of a double-stranded (ds) RNA virus from the fungus isolate Rhs 717 was characterized. The larger segment, dsRNA 1, is 2363 bases long whereas the smaller segment, dsRNA 2, has 2206 bases. The 5′ ends of the coding strands of dsRNA 1 and dsRNA 2 are highly conserved (100% identity over 47 bases), and contain inverted repeats capable of forming stable stem–loop structures. Analysis of the coding potential of each of the two segments showed that dsRNAs 1 and 2 could code for polypeptides of 730 aa (bases 86–2275; molecular mass 86 kDa) and 683 aa (bases 79–2130; molecular mass 76 kDa), respectively. The 86 kDa polypeptide has all the motifs of dsRNA RNA-dependent RNA polymerases (RDRP), and has significant homology with putative RDRPs of partitiviruses from and . The 76 kDa protein shows homology with the putative capsid proteins (CP) of the same viruses. Northern blot analysis revealed no subgenomic RNA species, consistent with the fact that the long open reading frames encoding the putative RDRP and CP cover the entire length of the respective dsRNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-2-549
2000-02-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/2/0810549a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-2-549&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. Journal of Molecular Biology 215, 403-410.[CrossRef]
    [Google Scholar]
  2. Anzola, J. V., Xu, Z., Asamizu, T. & Nuss, D. L. ( 1987; ). Segment-specific inverted repeats found adjacent to conserved terminal sequences in wound tumor virus genome and defective interfering RNAs. Proceedings of the National Academy of Sciences, USA 84, 8301-8305.[CrossRef]
    [Google Scholar]
  3. Bharathan, N. & Tavantzis, S. M. ( 1990; ). Genetic diversity of double-stranded RNAs in Rhizoctonia solani. Phytopathology 80, 631-635.[CrossRef]
    [Google Scholar]
  4. Bharathan, N. & Tavantzis, S. M. ( 1991; ). Assessment of genetic relatedness among double-stranded RNA components from Rhizoctonia solani isolates of diverse geographic origin. Phytopathology 81, 411-415.[CrossRef]
    [Google Scholar]
  5. Bruenn, J. A. ( 1993; ). A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. Nucleic Acids Research 21, 5667-5669.[CrossRef]
    [Google Scholar]
  6. Compel, P., Papp, I., Bibo, M., Fekete, C. & Hornok, L. ( 1999; ). Genetic interrelationships and genome organization of double stranded RNA elements in Fusarium poae. Virus Genes 18, 49-56.[CrossRef]
    [Google Scholar]
  7. Hoch, J. G., Tavantzis, S. M., Campana, R. J. & Anagnostakis, S. L. ( 1985; ). Evaluation of the presence of double-stranded RNA in Ceratocystis ulmi. Canadian Journal of Botany 63, 297-300.[CrossRef]
    [Google Scholar]
  8. Hong, Y., Cole, T. E., Brasier, C. M. & Buck, K. W. ( 1998; ). Evolutionary relationships among putative RNA polymerases encoded by a mitochondrial virus-like RNA in the Dutch Elm Disease fungus, Ophiostoma novo-ulmi, by other viruses and virus-like RNAs and by the Arabidopsis mitochondrial genome. Virology 246, 158-169.[CrossRef]
    [Google Scholar]
  9. Hyakumachi, M., Sumino, A., Ueda, I. & Shikada, E. ( 1985; ). Relationship between the presence of dsRNA in Rhizoctonia solani and pathogenicity. Annals of the Phytopathological Society Japan 51, 372-373.
    [Google Scholar]
  10. Jian, J., Lakshman, D. K. & Tavantzis, S. M. ( 1997; ). Association of distinct double-stranded RNAs with enhanced or diminished virulence in Rhizoctonia solani infecting potato. Molecular Plant–Microbe Interactions 10, 1002-1009.[CrossRef]
    [Google Scholar]
  11. Jian, J., Lakshman, D. K. & Tavantzis, S. M. ( 1998; ). A virulence-associated 6.4-kb dsRNA from Rhizoctonia solani is phylogenetically related to plant bromoviruses and electron transport enzymes. Molecular Plant–Microbe Interactions 11, 601-609.[CrossRef]
    [Google Scholar]
  12. Koonin, E. ( 1992; ). Evolution of double-stranded RNA viruses: a case for polyphyletic origin from different groups of positive-stranded RNA viruses. Seminars in Virology 3, 327-339.
    [Google Scholar]
  13. Koonin, E. & Dolja, V. ( 1993; ). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemistry and Molecular Biology 28, 375-430.[CrossRef]
    [Google Scholar]
  14. Kousik, C., Snow, J. & Valverde, R. ( 1994; ). Comparison of double-stranded RNA components and virulence among isolates of Rhizoctonia solani AG-1 1A and AG-1 1B. Phytopathology 84, 44-49.[CrossRef]
    [Google Scholar]
  15. Lakshman, D. K. & Tavantzis, S. M. ( 1994; ). Spontaneous appearance of genetically distinct dsRNA elements in Rhizoctonia solani. Phytopathology 84, 633-639.[CrossRef]
    [Google Scholar]
  16. Lakshman, D. K., Jian, J. & Tavantzis, S. M. ( 1998; ). A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway. Proceedings of the National Academy of Sciences, USA 95, 6425-6429.[CrossRef]
    [Google Scholar]
  17. Logemann, J., Schell, J. & Willmitzer, L. ( 1987; ). Improved method for the isolation of RNA from plant tissues. Analytical Biochemistry 163, 16-20.[CrossRef]
    [Google Scholar]
  18. Matthews, R. E. F. (1991). Plant Virology, 3rd edn. San Diego: Academic Press.
  19. Mindich, L., Qiao, X., Onodera, S., Gottlieb, P. & Frilander, M. ( 1994; ). RNA structural requirements for stability and minus-strand synthesis of the dsRNA bacteriophage-6. Virology 202, 258-263.[CrossRef]
    [Google Scholar]
  20. Morris, T. J. & Dodds, J. A. ( 1979; ). Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69, 854-858.[CrossRef]
    [Google Scholar]
  21. Murphy, F. A., Fauquet, C. M., Bishop, D. H. L., Ghabrial, S. A., Jarvis, A. W., Martelli, G. P., Mayo, M. A. & Summers, M. D. (editors) (1995). Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses. Vienna & New York: Springer-Verlag.
  22. Nogawa, M., Kageyama, T., Nakatani, A., Taguchi, G., Shimosaka, M. & Okazaki, M. ( 1996; ). Cloning and characterization of mycovirus double-stranded RNA from the plant pathogenic fungus, Fusarium solani f. sp. Robiniae. Bioscience, Biotechnology and Biochemistry 60, 784-788.[CrossRef]
    [Google Scholar]
  23. Ochman, H., Gerber, A. S. & Hartl, D. L. ( 1988; ). Genetic applications of an inverse polymerase reaction. Genetics 120, 621-623.
    [Google Scholar]
  24. Oh, C. & Hillman, B. ( 1995; ). Genome organization of a partitivirus from the filamentous ascomycete Atkinsonella hypoxylon. Journal of General Virology 76, 1461-1470.[CrossRef]
    [Google Scholar]
  25. Osaki, H., Kudo, A. & Ohtsu, Y. ( 1998; ). Nucleotide sequence of seed- and pollen-transmitted double-stranded RNA, which encodes a putative RNA-dependent RNA polymerase, detected from Japanese pear. Bioscience, Biotechnology and Biochemistry 62, 2101-2106.[CrossRef]
    [Google Scholar]
  26. Revill, P. A., Davidson, A. D. & Wright, P. J. ( 1994; ). The nucleotide sequence and genome organization of mushroom bacilliform virus: a single stranded RNA virus of Agaricus bisporus (Lange) Imbach. Virology 202, 904-911.[CrossRef]
    [Google Scholar]
  27. Ribas, J. & Wickner, R. ( 1996; ). Saccharomyces cerevisiae L-BC double-stranded RNA virus replicase recognizes the L-A positive-strand RNA 3′ end. Journal of Virology 70, 292-297.
    [Google Scholar]
  28. Routhier, E. & Bruenn, J. A. ( 1998; ). Functions of conserved motifs in the RNA-dependent RNA polymerase of a yeast double-stranded RNA virus. Journal of Virology 72, 4427-4429.
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Schuppli, D., Barrera, I. & Weber, H. ( 1994; ). Identification of recognition elements on bacteriophage Qβ minus strand RNA that are essential for template activity with Qβ replicase. Journal of Molecular Biology 243, 811-815.[CrossRef]
    [Google Scholar]
  31. Shapira, R., Choi, G., Hillman, B. & Nuss, D. ( 1991; ). The contribution of defective RNAs to the complexity of viral-encoded double-stranded RNA populations present in hypovirulent strains of the chestnut blight fungus Cryphonectria parasitica. EMBO Journal 10, 741-746.
    [Google Scholar]
  32. Simon, A. ( 1988; ). Satellite RNAs of plant viruses. Plant Molecular Biology Reporter 6, 240-255.[CrossRef]
    [Google Scholar]
  33. Sneh, B., Jabaji-Hare, S., Neate, S. & Dijst, G. (editors) (1996). Rhizoctonia species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Dordrecht: Kluwer.
  34. Swofford, D. L. (1998). PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, MA: Sinauer Associates.
  35. Tavantzis, S. M. ( 1980; ). Physicochemical properties of potato virus M. Virology 133, 427-430.
    [Google Scholar]
  36. Tavantzis, S. M. & Bandy, B. ( 1988; ). Properties of a mycovirus from Rhizoctonia solani and its virion-associated RNA polymerase. Journal of General Virology 69, 1465-1477.[CrossRef]
    [Google Scholar]
  37. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680.[CrossRef]
    [Google Scholar]
  38. Wickner, R. B. ( 1993; ). Double-stranded RNA virus replication and packaging. Journal of Biological Chemistry 268, 3797-3800.
    [Google Scholar]
  39. Xie, W. S., Antoniw, J. F. & White, R. F. ( 1993; ). Nucleotide sequence of beet cryptic virus 3 dsRNA 2 which encodes a putative RNA-dependent RNA polymerase. Journal of General Virology 74, 1467–1470; corrigendum 2303.[CrossRef]
    [Google Scholar]
  40. Zaccomer, B., Haenni, A.-L. & Macaya, G. ( 1995; ). The remarkable variety of plant RNA genomes. Journal of General Virology 76, 231-247.[CrossRef]
    [Google Scholar]
  41. Zanzinger, D. H., Bandy, B. P. & Tavantzis, S. M. ( 1984; ). High frequency of finding double-stranded RNA in naturally occurring isolates of Rhizoctonia solani. Journal of General Virology 65, 1601-1605.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-2-549
Loading
/content/journal/jgv/10.1099/0022-1317-81-2-549
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error