1887

Abstract

A virus with isometric virus particles (ca. 25 nm) was isolated from an apple tree and named Apple latent spherical virus (ALSV). Virus particles purified from infected formed two bands with densities of 1·41 and 1·43 g/cm in CsCl equilibrium density-gradient centrifugation, indicating that the virus is composed of two components. The virus had two ssRNA species (RNA1 and RNA2) and three capsid proteins (Vp25, Vp24 and Vp20). The complete nucleotide sequences of RNA1 and RNA2 were determined to be 6815 nt and 3384 nt excluding the 3′ poly(A) tail, respectively. RNA1 contains two partially overlapping ORFs encoding polypeptides of molecular mass 23 kDa (‘23K’; ORF1) and 235 kDa (‘235K’; ORF2); RNA2 has a single ORF encoding a polypeptide of 108 kDa (‘108K’). The 235K protein has, in order, consensus motifs of the protease cofactor, the NTP-binding helicase, the cysteine protease and the RNA polymerase, in good agreement with the gene arrangement of viruses in the . The 108K protein contains an LPL movement protein (MP) motif near the N terminus. Direct sequencing of the N-terminal amino acids of the three capsid proteins showed that Vp25, Vp20 and Vp24 are located in this order in the C-terminal region of the 108K protein. The cleavage sites of the 108K polyprotein were Q/G (MP/Vp25 and Vp25/Vp20) and E/G (Vp20/Vp24). Phylogenetic analysis of the ALSV RNA polymerase domain showed that ALSV falls into a cluster different from the nepo-, como- and fabavirus lineages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-2-541
2000-02-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/2/0810541a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-2-541&mimeType=html&fmt=ahah

References

  1. Bacher, J. W., Warkentin, D., Ramsdell, D. & Hancock, J. F. (1994). Sequence analysis of the 3′ termini of RNA1 and RNA2 of blueberry leaf mottle virus.Virus Research 33, 145-156.[CrossRef] [Google Scholar]
  2. Brooks, M. & Bruening, G. (1995). A subgenomic RNA associated with cherry leafroll virus infections.Virology 211, 33-41.[CrossRef] [Google Scholar]
  3. Chen, X. & Bruening, G. (1992a). Nucleotide sequence and genetic map of cowpea severe mosaic virus RNA2 and comparisons with RNA2 of other comoviruses.Virology 187, 682-692.[CrossRef] [Google Scholar]
  4. Chen, X. & Bruening, G. (1992b). Cloned DNA copies of cowpea severe mosaic genomic RNAs: infectious transcripts and complete nucleotide sequence of RNA1.Virology 191, 607-618.[CrossRef] [Google Scholar]
  5. De Sequeira, O. A. & Lister, R. M. (1969). Purification and relationships of some filamentous viruses from apple.Phytopathology 59, 1740-1749. [Google Scholar]
  6. Dessens, J. T. & Lomonossoff, G. P. (1991). Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease.Virology 184, 738-746.[CrossRef] [Google Scholar]
  7. Fuchs, M., Pinck, M., Serghini, M. A., Ravelonandro, M., Walter, B. & Pinck, L. (1989). The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13.Journal of General Virology 70, 955-962.[CrossRef] [Google Scholar]
  8. Gallitelli, D., Martelli, G. P. & Rana, G. L. (1984). Artichoke vein banding virus. CMI/AAB Descriptions of Plant Viruses, no. 285.
  9. Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M. & Koonin, E. V. (1989). Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases.FEBS Letters 243, 103-114.[CrossRef] [Google Scholar]
  10. Gorbalenya, A. E., Koonin, E. V. & Wolf, Y. I. (1990). A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses.FEBS Letters 262, 145-148.[CrossRef] [Google Scholar]
  11. Greif, C., Hemmer, O. & Fritsch, C. (1988). Nucleotide sequence of tomato black ring virus RNA-1.Journal of General Virology 69, 1517-1529.[CrossRef] [Google Scholar]
  12. Gubler, U. & Hoffman, B. J. (1983). A simple and very efficient method for generating cDNA libraries.Gene 25, 263-269.[CrossRef] [Google Scholar]
  13. Hellen, C. U. T., Krausslich, H. G. & Wimmer, E. (1989). Proteolytic processing of polyproteins in the replication of RNA viruses.Biochemistry 28, 9881-9890.[CrossRef] [Google Scholar]
  14. Ito, T. & Yoshida, K. (1997). The etiology of apple russet ring disease. Annals of the Phytopathological Society of Japan 63, 487 (Abstract). [Google Scholar]
  15. Ito, T., Koganezawa, H. & Yoshida, K. (1992). Back-transmission of apple russet ring A virus, an isometric virus isolated from an apple tree with fruit russet ring and leaf pucker symptoms, to apple seedlings. Annals of the Phytopathological Society of Japan 58, 617 (Abstract). [Google Scholar]
  16. Iwanami, T., Kondo, Y. & Karasev, A. (1999). Nucleotide sequence and taxonomy of satsuma dwarf virus.Journal of General Virology 80, 793-797. [Google Scholar]
  17. Jones, A. T., Mayo, M. A. & Henderson, S. J. (1985). Biological and biochemical properties of an isolate of cherry rasp leaf virus from red raspberry.Annals of Applied Biology 106, 101-110.[CrossRef] [Google Scholar]
  18. Koganezawa, H., Yanase, H., Ochiai, M. & Sakuma, T. (1985). An isometric viruslike particle isolated from russet ring-diseased apple. Annals of the Phytopathological Society of Japan 51, 363 (Abstract). [Google Scholar]
  19. Koonin, E. V. & Dolja, V. V. (1993). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences.Critical Reviews in Biochemistry and Molecular Biology 28, 375-430.[CrossRef] [Google Scholar]
  20. Koonin, E. V., Mushegian, A. R., Ryabov, E. V. & Dolja, V. V. (1991). Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity.Journal of General Virology 72, 2895-2903.[CrossRef] [Google Scholar]
  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680-685.[CrossRef] [Google Scholar]
  22. Le Gall, O., Candresse, T., Brault, V. & Dunez, J. (1989). Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA1.Nucleic Acids Research 17, 7795-7807.[CrossRef] [Google Scholar]
  23. Lütcke, H. A., Chow, K. C., Mickel, F. S., Moss, K. A., Kern, H. F. & Scheele, G. A. (1987). Selection of AUG initiation codons differs in plants and animals.EMBO Journal 6, 43-48. [Google Scholar]
  24. Margis, R. & Pinck, L. (1992). Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase.Virology 190, 884-888.[CrossRef] [Google Scholar]
  25. Mayo, M. A. & Fritsch, C. (1994). A possible consensus sequence for VPg of viruses in the family Comoviridae.FEBS Letters 354, 129-130.[CrossRef] [Google Scholar]
  26. Murphy, F. A., Fauquet, C. M., Bishop, D. H. L., Ghabrial, S. A., Jarvis, A. W., Martelli, G. P., Mayo, M. A. & Summers, M. D. (editors) (1995).Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses. Vienna & New York: Springer-Verlag.
  27. Mushegian, A. R. (1994). The putative movement domain encoded by nepovirus RNA-2 is conserved in all sequenced nepoviruses.Archives of Virology 135, 437-441.[CrossRef] [Google Scholar]
  28. Nakamura, S., Honkura, R., Iwai, T., Ugaki, M. & Ohashi, T. (1996). The complete nucleotide sequence of bean yellow mosaic virus genomic RNA.Annals of the Phytopathological Society of Japan 62, 472-477.[CrossRef] [Google Scholar]
  29. Németh, M. (1986).Virus, Mycoplasma and Rickettsia Diseases of Fruit Trees. Budapest: Académia Kiadó.
  30. Ritzenthaler, C., Viry, M., Pinck, M., Margis, R., Fuchs, M. & Pinck, L. (1991). Complete nucleotide sequence and genetic organization of grapevine fanleaf nepovirus RNA1.Journal of General Virology 72, 2357-2365.[CrossRef] [Google Scholar]
  31. Rott, M. E., Tremaine, J. H. & Rochon, D. M. (1991a). Nucleotide sequence of tomato ringspot virus RNA-2.Journal of General Virology 72, 1505-1514.[CrossRef] [Google Scholar]
  32. Rott, M. E., Tremaine, J. H. & Rochon, D. M. (1991b). Comparison of the 5′ and 3′ termini of tomato ringspot virus RNA1 and RNA2: evidence for RNA recombination.Virology 185, 468-472.[CrossRef] [Google Scholar]
  33. Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees.Molecular Biology and Evolution 4, 406-425. [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors.Proceedings of the National Academy of Sciences, USA 74, 5463-5467.[CrossRef] [Google Scholar]
  36. Serghini, M. A., Fuchs, M., Pinck, M., Reinbolt, J., Walter, B. & Pinck, L. (1990). RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location.Journal of General Virology 71, 1433-1441.[CrossRef] [Google Scholar]
  37. Stace-Smith, R. & Hansen, A. J. (1976). Cherry rasp leaf virus. CMI/AAB Descriptions of Plant Viruses, no. 159.
  38. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Research 22, 4673-4680.[CrossRef] [Google Scholar]
  39. Wellink, J. & van Kammen, A. (1988). Proteases involved in the processing of viral polyproteins.Archives of Virology 98, 1-26.[CrossRef] [Google Scholar]
  40. Yoshikawa, N., Sasaki, E., Kato, M. & Takahashi, T. (1992). The nucleotide sequence of apple stem grooving capillovirus genome.Virology 191, 98-105.[CrossRef] [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-81-2-541
Loading
/content/journal/jgv/10.1099/0022-1317-81-2-541
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error