1887

Abstract

Changes in co-receptor-use by human immunodeficiency virus type 1 (HIV-1) strains are relatively rare . Here we describe two variants derived from the CCR5-using strain SF162, selected for replication in the C8166 T-cell line. Amino acid substitutions in the V3 loop conferred CXCR4-use; however, the loss of macrophage-tropism by one variant was due to a single mutation in the start codon of . We discuss how V3 loop and mutations acquired by replication in T-cell lines correlate with similar changes reported for primary isolates and HIV-1 sequences .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-2899
2000-12-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0812899a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-2899&mimeType=html&fmt=ahah

References

  1. Agace, W. W., Amara, A., Roberts, A. I., Pablos, J. L., Thelen, M., Uguccioni, M., Li, X. Y., Marsal, J., Arenzana-Seisdedos, F., Delauney, T., Ebert, E. C., Moser, B. & Parker, C. M. ( 2000; ). Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Current Biology 10, 325-328.[CrossRef]
    [Google Scholar]
  2. Asjo, B., Morfeldt Manson, L., Albert, J., Biberfeld, G., Karlsson, A., Lidman, K. & Fenyo, E. M. ( 1986; ). Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet ii, 660-662.
    [Google Scholar]
  3. Balliet, J. W., Kolson, D. L., Eiger, G., Kim, F. M., McGann, K. A., Srinivasan, A. & Collman, R. ( 1994; ). Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate. Virology 200, 623-631.[CrossRef]
    [Google Scholar]
  4. Connor, R. I. & Ho, D. D. ( 1994; ). Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. Journal of Virology 68, 4400-4408.
    [Google Scholar]
  5. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S. & Landau, N. R. ( 1997; ). Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. Journal of Experimental Medicine 185, 621-628.[CrossRef]
    [Google Scholar]
  6. De Jong, J. J., De Ronde, A., Keulen, W., Tersmette, M. & Goudsmit, J. ( 1992; ). Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. Journal of Virology 66, 6777-6780.
    [Google Scholar]
  7. Dejucq, N., Simmons, G. & Clapham, P. R. ( 1999; ). Expanded tropism of primary human immunodeficiency virus type 1 R5 strains to CD4+ T-cell lines determined by the capacity to exploit low concentrations of CCR5. Journal of Virology 73, 7842-7847.
    [Google Scholar]
  8. Di Marzio, P., Tse, J. & Landau, N. R. ( 1998; ). Chemokine receptor regulation and HIV type 1 tropism in monocyte macrophages. AIDS Research and Human Retroviruses 14, 129-138.[CrossRef]
    [Google Scholar]
  9. Fauci, A. S. ( 1996; ). Host factors and the pathogenesis of HIV-induced disease. Nature 384, 529-534.[CrossRef]
    [Google Scholar]
  10. Fouchier, R. A., Groenink, M., Kootstra, N. A., Tersmette, M., Huisman, H. G., Miedema, F. & Schuitemaker, H. ( 1992; ). Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. Journal of Virology 66, 3183-3187.
    [Google Scholar]
  11. Harrowe, G. & Cheng-Mayer, C. ( 1995; ). Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. Virology 210, 490-494.[CrossRef]
    [Google Scholar]
  12. Holm-Hansen, C., Grothues, D., Rustad, S., Rosok, B., Pascu, F. R. & Asjo, B. ( 1995; ). Characterization of HIV type 1 from Romanian children: lack of correlation between V3 loop amino acid sequence and syncytium formation in MT-2 cells. AIDS Research and Human Retroviruses 11, 597-603.[CrossRef]
    [Google Scholar]
  13. Kawamura, M., Ishizaki, T., Ishimoto, A., Shioda, T., Kitamura, T. & Adachi, A. ( 1994; ). Growth ability of human immunodeficiency virus type 1 auxiliary gene mutants in primary blood macrophage cultures. Journal of General Virology 75, 2427-2431.[CrossRef]
    [Google Scholar]
  14. Klasse, P. J., Boyd, M. T., Weiss, R. A. & Schulz, T. F. ( 1996; ). Mutations in the vpu, env, and nef genes of a syncytium-inducing variant of HIV type 1 JR-CSF that infects a range of T cell lines. AIDS Research and Human Retroviruses 12, 347-350.[CrossRef]
    [Google Scholar]
  15. Lama, J., Mangasarian, A. & Trono, D. ( 1999; ). Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Current Biology 9, 622-631.[CrossRef]
    [Google Scholar]
  16. Lathey, J. L., Pratt, R. D. & Spector, S. A. ( 1997; ). Appearance of autologous neutralizing antibody correlates with reduction in virus load and phenotype switch during primary infection with human immunodeficiency virus type 1. Journal of Infectious Diseases 175, 231-232.[CrossRef]
    [Google Scholar]
  17. Michael, N. L. & Moore, J. P. ( 1999; ). HIV-1 entry inhibitors: evading the issue. Nature Medicine 5, 740-742.[CrossRef]
    [Google Scholar]
  18. Pablos, J. L., Amara, A., Bouloc, A., Santiago, B., Caruz, A., Galindo, M., Delaunay, T., Virelizier, J. L. & Arenzana-Seisdedos, F. ( 1999; ). Stromal cell derived factor is expressed by dendritic cells and endothelium in human skin. American Journal of Pathology 155, 1577-1586.[CrossRef]
    [Google Scholar]
  19. Scarlatti, G., Tresoldi, E., Bjorndal, A., Fredriksson, R., Colognesi, C., Deng, H. K., Malnati, M. S., Plebani, A., Siccardi, A. G., Littman, D. R., Fenyo, E. M. & Lusso, P. ( 1997; ). In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nature Medicine 3, 1259-1265.[CrossRef]
    [Google Scholar]
  20. Schubert, U., Clouse, K. A. & Strebel, K. ( 1995; ). Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes. Journal of Virology 69, 7699-7711.
    [Google Scholar]
  21. Schubert, U., Ferrer-Montiel, A. V., Oblatt-Montal, M., Henklein, P., Strebel, K. & Montal, M. ( 1996; ). Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Letters 398, 12-18.[CrossRef]
    [Google Scholar]
  22. Schubert, U., Anton, L. C., Bacik, I., Cox, J. H., Bour, S., Bennink, J. R., Orlowski, M., Strebel, K. & Yewdell, J. W. ( 1998; ). CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. Journal of Virology 72, 2280-2288.
    [Google Scholar]
  23. Schubert, U., Bour, S., Willey, R. L. & Strebel, K. ( 1999; ). Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env. Journal of Virology 73, 887-896.
    [Google Scholar]
  24. Shioda, T., Levy, J. A. & Cheng-Mayer, C. ( 1991; ). Macrophage and T cell line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349, 167-169.[CrossRef]
    [Google Scholar]
  25. Simmons, G., McKnight, A., Takeuchi, Y., Hoshino, H. & Clapham, P. R. ( 1995; ). Cell-to-cell fusion, but not virus entry in macrophages by T-cell line tropic HIV-1 strains: a V3 loop-determined restriction. Virology 209, 696-700.[CrossRef]
    [Google Scholar]
  26. Simmons, G., Wilkinson, D., Reeves, J. D., Dittmar, M. T., Beddows, S., Weber, J., Carnegie, G., Desselberger, U., Gray, P. W., Weiss, R. A. & Clapham, P. R. ( 1996; ). Primary syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. Journal of Virology 70, 8355-8360.
    [Google Scholar]
  27. Simmons, G., Reeves, J. D., McKnight, A., Dejucq, N., Hibbitts, S., Power, C. A., Aarons, E., Schols, D., Clercq, E. D., Proudfoot, A. E. I. & Clapham, P. R. ( 1998; ). CXCR4 as a functional coreceptor for human immunodeficiency virus type 1 infection of primary macrophages. Journal of Virology 72, 8453-8457.
    [Google Scholar]
  28. Stent, G., Joo, G. B., Kierulf, P. & Asjo, B. ( 1997; ). Macrophage tropism: fact or fiction? Journal of Leukocyte Biology 62, 4-11.
    [Google Scholar]
  29. Tersmette, M., de Goede, R. E., Al, B. J., Winkel, I. N., Gruters, R. A., Cuypers, H. T., Huisman, H. G. & Miedema, F. ( 1988; ). Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Journal of Virology 62, 2026-2032.
    [Google Scholar]
  30. Verani, A., Pesenti, E., Polo, S., Tresoldi, E., Scarlatti, G., Lusso, P., Siccardi, A. G. & Vercelli, D. ( 1998; ). CXCR4 is a functional coreceptor for infection of human macrophages by CXCR4-dependent primary HIV-1 isolates. Journal of Immunology 161, 2084-2088.
    [Google Scholar]
  31. Yi, Y., Rana, S., Turner, J. D., Gaddis, N. & Collman, R. G. ( 1998; ). CXCR4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1. Journal of Virology 72, 772-777.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-2899
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-2899
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error