1887

Abstract

The antigenic properties and genetic stability of a multiply passaged foot-and-mouth disease virus (FMDV) clone C-S8c1 with an Arg-Gly-Gly triplet (RGG) instead of the Arg-Gly-Asp (RGD) integrin-recognition motif at positions 141 to143 of capsid protein VP1 are described. Clear antigenic differences between FMDV RGG and clone C-S8c1 have been documented in ELISA, enzyme-linked immunoelectrotransfer (Western) blot and neutralization assays using site A-specific monoclonal antibodies and anti-FMDV polyclonal antibodies from swine and guinea pigs. The results validate with a live virus the role of the RGD (in particular Asp-143) in recognition of (and neutralization by) antibodies, a role previously suggested by immunochemical and structural studies with synthetic peptides. The FMDV RGG was genetically stable in a large proportion of serial infections of BHK-21 cells. However, a revertant virus with RGD was generated in one out of six passage series. Interestingly, this revertant FMDV did not reach dominance but established an equilibrium with its parental FMDV RGG, accompanied by an increase of quasispecies complexity at the sequences around the RGG triplet. FMDV RGG exhibited a selective disadvantage relative to other RGD-containing clones isolated from the same parental FMDV population. The results suggest that large antigenic variations can be prompted by replacements at critical capsid sites, including those involved in receptor recognition. These critical replacements may yield viruses whose stability allows them to replicate efficiently and to expand the sequence repertoire of an antigenic site.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-8-1899
1999-08-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/8/0801899a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-8-1899&mimeType=html&fmt=ahah

References

  1. Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. J. & Brown, F. ( 1989; ). The three dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution. Nature 337, 709-716.[CrossRef]
    [Google Scholar]
  2. Bachrach, H. L. ( 1968; ). Foot-and-mouth disease virus. Annual Review of Microbiology 22, 201-244.[CrossRef]
    [Google Scholar]
  3. Baranowski, E., Sevilla, N., Verdaguer, N., Ruiz-Jarabo, C. M., Beck, E. & Domingo, E. ( 1998; ). Multiple virulence determinants of foot-and-mouth disease virus in cell culture. Journal of Virology 72, 6362-6372.
    [Google Scholar]
  4. Berinstein, A., Roivainen, M., Hovi, T., Mason, P. W. & Baxt, B. ( 1995; ). Antibodies to the vitronectin receptor (integrin αvβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. Journal of Virology 69, 2664-2666.
    [Google Scholar]
  5. Bittle, J. L., Houghten, R. A., Alexander, H., Shinnick, T. M., Sutcliffe, J. G., Lerner, R. A., Rowlands, D. J. & Brown, F. ( 1982; ). Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298, 30-33.[CrossRef]
    [Google Scholar]
  6. Borrego, B. (1993). Respuesta inmune frente a distintos antígenos del virus de la fiebre aftosa. Variantes virales obtenidas en presencia o ausencia de selección por anticuerpos específicos. PhD thesis, Universidad Autónoma de Madrid, Spain.
  7. Borrego, B., Novella, I. S., Giralt, E., Andreu, D. & Domingo, E. ( 1993; ). Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. Journal of Virology 67, 6071-6079.
    [Google Scholar]
  8. Brown, F. (1994). Foot and mouth disease. In Synthetic Vaccines, pp. 416–432. Edited by B. H. Nicholson. Oxford: Blackwell Scientific Publications.
  9. Carrillo, C., Plana, J., Mascarella, R., Bergadá, J. & Sobrino, F. ( 1990; ). Genetic and phenotypic variability during replication of foot-and-mouth disease virus in swine. Virology 179, 890-892.[CrossRef]
    [Google Scholar]
  10. Carrillo, C., Borca, M., Moore, D. M., Morgan, D. O. & Sobrino, F. ( 1998; ). In vivo analysis of the stability and fitness of variants recovered from foot-and-mouth disease virus quasispecies. Journal of General Virology 79, 1699-1706.
    [Google Scholar]
  11. Clarke, B. E., Carroll, A. R., Rowlands, D. J., Nicholson, B. H., Houghten, R. A., Lerner, R. A. & Brown, F. ( 1983; ). Synthetic peptides mimic subtype specificity of foot-and-mouth disease virus. FEBS Letters 157, 261-264.[CrossRef]
    [Google Scholar]
  12. de la Torre, J. C., Dávila, M., Sobrino, F., Ortín, J. & Domingo, E. ( 1985; ). Establishment of cell lines persistently infected with foot-and-mouth disease virus. Virology 145, 24-35.[CrossRef]
    [Google Scholar]
  13. de la Torre, J. C., Martínez-Salas, E., Díez, J., Villaverde, A., Gebauer, F., Rocha, E., Dávila, M. & Domingo, E. ( 1988; ). Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. Journal of Virology 62, 2050-2058.
    [Google Scholar]
  14. Díez, J., Mateu, M. G. & Domingo, E. ( 1989; ). Selection of antigenic variants of foot-and-mouth disease virus in the absence of antibodies, as revealed by an in situ assay. Journal of General Virology 70, 3281-3289.[CrossRef]
    [Google Scholar]
  15. Díez, J., Dávila, M., Escarmís, C., Mateu, M. G., Domínguez, J., Pérez, J. J., Giralt, E., Melero, J. A. & Domingo, E. ( 1990; ). Unique amino acid substitutions in the capsid proteins of foot-and-mouth disease virus from a persistent infection in cell culture. Journal of Virology 64, 5519-5528.
    [Google Scholar]
  16. Domingo, E., D vila, M. & Ort n J. ( 1980; ). Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth disease virus. Gene 11, 333–346.[CrossRef]
    [Google Scholar]
  17. Domingo, E., Mateu, M. G., Martínez, M. A., Dopazo, J., Moya, A. & Sobrino, F. ( 1990; ). Genetic variability and antigenic diversity of foot-and-mouth disease virus. In Applied Virology Research, vol. II, Virus Variation and Epidemiology, pp. 233-266. Edited by E. Kurstak, R. G. Marusyk, S. A. Murphy & M. H. V. Van Regenmortel. New York: Plenum Publishing.
  18. Domingo, E., Escarmís, C., Martínez, M. A., Martínez-Salas, E. & Mateu, M. G. ( 1992; ). Foot-and-mouth disease virus populations are quasispecies. Current Topics in Microbiology and Immunology 176, 33-47.
    [Google Scholar]
  19. Domingo, E. & Holland, J. J. ( 1994; ). Mutation rates and rapid evolution of RNA viruses. In Evolutionary Biology of Viruses, pp. 161-184. Edited by S. S. Morse. New York: Raven Press.
  20. Escarmís, C., Dávila, M., Charpentier, N., Bracho, A., Moya, A. & Domingo, E. ( 1996; ). Genetic lesions associated with Muller’s ratchet in an RNA virus. Journal of Molecular Biology 264, 255-267.[CrossRef]
    [Google Scholar]
  21. Escarmís, C., Carrillo, E. C., Ferrer, M., García Arriaza, J. F., López, N., Tami, C., Verdaguer, N., Domingo, E. & Franze-Fernández, M. T. ( 1998; ). Rapid selection in modified BHK-21 cells of a foot-and-mouth disease virus variant showing alterations in cell tropism. Journal of Virology 72, 10171-10179.
    [Google Scholar]
  22. Escarm s, C. D vila, M. & Domingo, E. ( 1999; ). Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller’s ratchet. Journal of Molecular Biology 285, 495–505.[CrossRef]
    [Google Scholar]
  23. Fox, G., Parry, N., Barnett, P. V., McGinn, B., Rowlands, D. J. & Brown, F. ( 1989; ). The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Journal of General Virology 70, 625-637.[CrossRef]
    [Google Scholar]
  24. Gebauer, F., de la Torre, J. C., Gomes, I., Mateu, M. G., Barahona, H., Tiraboschi, B., Bergmann, I., Augé de Mello, M. G. & Domingo, E. ( 1988; ). Rapid selection of genetic and antigenic variants of foot-and-mouth disease virus during persistence in cattle. Journal of Virology 62, 2041-2049.
    [Google Scholar]
  25. Hernández, J., Martínez, M. A., Rocha, E., Domingo, E. & Mateu, M. G. ( 1992; ). Generation of a subtype-specific neutralization epitope in foot-and-mouth disease virus of a different subtype. Journal of General Virology 73, 213-216.[CrossRef]
    [Google Scholar]
  26. Hernández, J., Valero, M. L., Andreu, D., Domingo, E. & Mateu, M. G. ( 1996; ). Antibody and host cell recognition of foot-and-mouth disease virus (serotype C) cleaved at the Arg-Gly-Asp (RGD) motif: a structural interpretation. Journal of General Virology 77, 257-264.[CrossRef]
    [Google Scholar]
  27. Holguín, A., Hernández, J., Martínez, M. A., Mateu, M. G. & Domingo, E. ( 1997; ). Differential restrictions on antigenic variation among antigenic sites of foot-and-mouth disease virus in the absence of antibody selection. Journal of General Virology 78, 601-609.
    [Google Scholar]
  28. Jackson, T., Ellard, F. M., Abu Ghazaleh, R., Brookes, S. M., Blackemore, W. E., Corteyn, A. H., Stuart, D. I., Newmann, J. W. I. & King, A. M. Q. ( 1996; ). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. Journal of Virology 70, 5282-5287.
    [Google Scholar]
  29. Jackson, T., Sharma, A., Ghazaleh, R. A., Blackemore, W. E., Ellard, F. M., Simmons, D. F. L., Newman, J. W. I., Stuart, D. I. & King, A. M. Q. ( 1997; ). Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin αvβ3 in vitro. Journal of Virology 71, 8357-8361.
    [Google Scholar]
  30. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  31. Lea, S., Hernández, J., Blakemore, W., Brocchi, E., Curry, S., Domingo, E., Fry, E., Abu Ghazaleh, R., King, A., Newman, J., Stuart, D. & Mateu, M. G. ( 1994; ). The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2, 123-139.[CrossRef]
    [Google Scholar]
  32. Leippert, M., Beck, E., Weiland, F. & Pfaff, E. ( 1997; ). Point mutations within the βG–βH loop of foot-and-mouth disease virus O1K affect virus attachment to target cells. Journal of Virology 71, 1046-1051.
    [Google Scholar]
  33. Logan, D., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Jackson, T., King, A., Lea, S., Lewis, R., Newman, J., Parry, N., Rowlands, D. J., Stuart, D. & Fry, E. ( 1993; ). Structure of a major immunogenic site of foot-and-mouth disease virus. Nature 362, 566-568.[CrossRef]
    [Google Scholar]
  34. Marilat, V., Augé de Mello, P., Tiraboschi, B., Beck, E., Gomes, I. & Bergmann, I. E. ( 1994; ). Genetic variation of foot-and-mouth disease virus during persistent infection in cattle. Virus Research 34, 31-48.[CrossRef]
    [Google Scholar]
  35. Martínez, M. A., Hernández, J., Piccone, M. E., Palma, E. L., Domingo, E., Knowles, N. & Mateu, M. G. ( 1991; ). Two mechanisms of antigenic diversification of foot-and-mouth disease virus. Virology 184, 695-706.[CrossRef]
    [Google Scholar]
  36. Martínez, M. A., Verdaguer, N., Mateu, M. G. & Domingo, E. ( 1997; ). Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proceedings of the National Academy of Sciences, USA 94, 6798-6802.[CrossRef]
    [Google Scholar]
  37. Mason, P. W., Rieder, E. & Baxt, B. ( 1994; ). RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proceedings of the National Academy of Sciences, USA 91, 1932-1936.[CrossRef]
    [Google Scholar]
  38. Mateu, M. G. ( 1995; ). Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Research 38, 1-24.[CrossRef]
    [Google Scholar]
  39. Mateu, M. G., Rocha, E., Vicente, O., Vayreda, F., Navalpotro, C., Andreu, D., Pedroso, E., Giralt, E., Enjuanes, L. & Domingo, E. ( 1987; ). Reactivity with monoclonal antibodies of viruses from an episode of foot-and-mouth disease. Virus Research 8, 261-274.[CrossRef]
    [Google Scholar]
  40. Mateu, M. G., Da Silva, J. L., Rocha, E., De Brum, D. L., Alonso, A., Enjuanes, L., Domingo, E. & Barahona, H. ( 1988; ). Extensive antigenic heterogeneity of foot-and-mouth disease virus of serotype C. Virology 166, 113-124.[CrossRef]
    [Google Scholar]
  41. Mateu, M. G., Martínez, M. A., Rocha, E., Andreu, D., Parejo, J., Giralt, E., Sobrino, F. & Domingo, E. ( 1989; ). Implications of a quasispecies genome structure: affect of frequent, naturally occurring amino acid substitutions on the antigenicity of foot-and-mouth disease virus. Proceedings of the National Academy of Sciences, USA 86, 5883-5887.[CrossRef]
    [Google Scholar]
  42. Mateu, M. G., Martínez, M. A., Capucci, L., Andreu, D., Giralt, E., Sobrino, F., Brocchi, E. & Domingo, E. ( 1990; ). A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. Journal of General Virology 71, 629-637.[CrossRef]
    [Google Scholar]
  43. Mateu, M. G., Hernández, J., Martínez, M. A., Feigelstock, D., Lea, S., Pérez, J. J., Giralt, E., Stuart, D., Palma, E. L. & Domingo, E. ( 1994; ). Antigenic heterogeneity of a foot-and-mouth disease virus serotype in the field is mediated by very limited sequence variation at several antigenic sites. Journal of Virology 68, 1407-1417.
    [Google Scholar]
  44. Mateu, M. G., Andreu, D. & Domingo, E. ( 1995a; ). Antibodies raised in a natural host and monoclonal antibodies recognize similar antigenic features of foot-and-mouth disease virus. Virology 210, 120-127.[CrossRef]
    [Google Scholar]
  45. Mateu, M. G., Camarero, J. A., Giralt, E., Andreu, D. & Domingo, E. ( 1995b; ). Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. Virology 206, 298-306.[CrossRef]
    [Google Scholar]
  46. Mateu, M. G., Valero, M. L., Andreu, D. & Domingo, E. ( 1996; ). Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus: effect on cell recognition. Journal of Biological Chemistry 271, 12814-12819.[CrossRef]
    [Google Scholar]
  47. Neff, S., Sa-Carvalho, D., Rieder, E., Mason, P., Blystone, S. D., Brown, E. J. & Baxt, B. ( 1998; ). Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. Journal of Virology 72, 3587-3594.
    [Google Scholar]
  48. Novella, I. S., Borrego, B., Mateu, M. G., Domingo, E., Giralt, E. & Andreu, D. ( 1993; ). Use of substituted and tandem-repeated peptides to probe the relevance of the highly conserved RGD tripeptide in the immune response against foot-and-mouth disease virus. FEBS Letters 330, 253-259.[CrossRef]
    [Google Scholar]
  49. Novella, I. S., Duarte, E. A., Elena, S. F., Moya, A., Domingo, E. & Holland, J. J. ( 1995; ). Exponential increases of RNA virus fitness during large population transmissions. Proceedings of the National Academy of Sciences, USA 92, 5841-5844.[CrossRef]
    [Google Scholar]
  50. Pereira, H. G. ( 1977; ). Subtyping of foot-and-mouth disease virus. In Developments in Biological Standardization, pp. 167-174. Edited by C. Mackowiak & R. H. Regamey. Basel: Karger.
  51. Pereira, H. G. ( 1981; ). Foot-and-mouth disease. In Virus Diseases of Food Animals, pp. 333-363. Edited by E. P. G. Gibbs. New York: Academic Press.
  52. Pfaff, M. (1997). Recognition sites of RGD-dependent integrins. In Integrin–Ligand Interaction, pp. 101–121 Edited by J. A. Eble & K. Kühn. Austin: R. G. Landes.
  53. Pfaff, E., Mussgay, M., Böhm, H. O., Schulz, G. E. & Schaller, H. ( 1982; ). Antibodies against a preselected peptide recognize and neutralize foot-and-mouth disease virus. EMBO Journal 1, 869-874.
    [Google Scholar]
  54. Rieder Rojas, E. R., Carrillo, E., Schiappacassi, M. & Campos, R. ( 1992; ). Modification of foot-and-mouth disease virus O1 Caseros after serial passage in the presence of antiviral polyclonal sera. Journal of Virology 66, 3368-3372.
    [Google Scholar]
  55. Rowlands, D. J., Clarke, B. E., Carroll, A. R., Brown, F., Nicholson, B. H., Bittle, J. L., Houghten, R. A. & Lerner, R. A. ( 1983; ). Chemical basis of antigenic variation in foot-and-mouth disease virus. Nature 306, 694-697.[CrossRef]
    [Google Scholar]
  56. Sa-Carvalho, D., Rieder, E., Baxt, B., Rodarte, R., Tanuri, A. & Mason, P. ( 1997; ). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. Journal of Virology 71, 5115-5123.
    [Google Scholar]
  57. Sobrino, F., Dávila, M., Ortín, J. & Domingo, E. ( 1983; ). Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128, 310-318.[CrossRef]
    [Google Scholar]
  58. Strohmaier, K., Franze, R. & Adam, K.-H. ( 1982; ). Location and characterization of the antigenic portion of the FMDV immunizing protein. Journal of General Virology 59, 295-306.[CrossRef]
    [Google Scholar]
  59. Taboga, O., Tami, C., Carrillo, E., Núñez, J. I., Rodríguez, A., Saiz, J. C., Blanco, E., Valero, M.-L., Roig, X., Camarero, J. A., Andreu, D., Mateu, M. G., Giralt, E., Domingo, E., Sobrino, F. & Palma, E. L. ( 1997; ). A large scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. Journal of Virology 71, 2606-2614.
    [Google Scholar]
  60. Verdaguer, N., Mateu, M. G., Andreu, D., Giralt, E., Domingo, E. & Fita, I. ( 1995; ). Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO Journal 14, 1690-1696.
    [Google Scholar]
  61. Verdaguer, N., Mateu, M. G., Bravo, J., Domingo, E. & Fita, I. ( 1996; ). Induced pocket to accommodate the cell attachment Arg-Gly-Asp motif in a neutralizing antibody against foot-and-mouth disease virus. Journal of Molecular Biology 256, 364-376.[CrossRef]
    [Google Scholar]
  62. Verdaguer, N., Sevilla, N., Valero, M. L., Stuart, D., Brocchi, E., Andreu, D., Giralt, E., Domingo, E., Mateu, M. G. & Fita, I. ( 1998; ). A similar pattern of interaction for different antibodies with a major antigenic site of foot-and-mouth disease virus: Implications for intratypic antigenic variation. Journal of Virology 72, 739-748.
    [Google Scholar]
  63. Verdaguer, N., Schoehn, G., Ochoa, W. F., Fita, I., Brookes, S., King, A. M. Q., Domingo, E., Mateu, M. G., Stuart, D. & Hewat, E. A. ( 1999; ). Flexibility of the major antigenic loop of foot-and-mouth disease virus bound to an Fab fragment of neutralizing antibody: structure and neutralization. Virology 355, 260-268.
    [Google Scholar]
  64. Vosloo, W., Bastos, A. D., Kirkbride, E., Esterhuysen, J. J., Janse van Rensburg, D., Bengis, R. G., Keet, D. W. & Thomson, G. R. ( 1996; ). Persistent infection of African buffalo (Syncerus caffer) with SAT-type foot-and-mouth disease viruses: rate of fixation of mutations, antigenic change and interspecies transmission. Journal of General Virology 77, 1457-1467.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-8-1899
Loading
/content/journal/jgv/10.1099/0022-1317-80-8-1899
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error