1887

Abstract

The polyene antibiotic MS-8209 is currently one of the most effective drugs in the treatment of experimental scrapie. However, its mechanism of action and its site of intervention in the pathogenetical process of scrapie infection are largely unknown. It has been shown previously that the infection of immunodeficient SCID mice by the peripheral route provides a reliable model for direct scrapie neuroinvasion, bypassing the lymphoreticular system. Indeed, a proportion of SCID mice develop scrapie after a similar time to immunocompetent mice, despite their severe immune impairment. This model is now used to clarify the targets of MS-8209. In SCID mice, MS-8209 treatment protected against infection but did not prolong survival time. In SCID mice immunologically reconstituted prior to inoculation, the drug delayed the disease without an effect on the attack rate. These findings strongly suggest that MS-8209 acts by hampering the first step of the neuroinvasion process, i.e. the uptake of the infectious agent by peripheral nerve endings. The mechanism leading to the inhibition of agent propagation to nervous cells is discussed with regard to the properties of polyene antibiotics.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-7-1873
1999-07-01
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/7/0801873a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-7-1873&mimeType=html&fmt=ahah

References

  1. Blättler T., Brandner S., Raeber A. J., Klein M. A., Voigtlander T., Weissmann C., Aguzzi A. 1997; PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389:69–73
    [Google Scholar]
  2. Bolton D. C., McKinley M. P., Prusiner S. B. 1982; Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311
    [Google Scholar]
  3. Bosma M. J., Carroll A. M. 1991; The SCID mouse mutant: definition, characterization, and potential uses. Annual Review of Immunology 9:323–350
    [Google Scholar]
  4. Carp R. I., Callahan S. M. 1982; Effect of mouse peritoneal macrophages on scrapie infectivity during extended in vitro incubation. Intervirology 17:201–207
    [Google Scholar]
  5. Collis S. C., Kimberlin R. H. 1985; Long-term persistence of scrapie infection in mouse spleens in the absence of clinical disease. FEMS Microbiology Letters 29:111–114
    [Google Scholar]
  6. Demaimay R., Adjou K. T., Beringue V., Demart S., Lasmezas C. I., Deslys J.-P., Seman M., Dormont D. 1997; Late treatment with polyene antibiotics can prolong the survival time of scrapie–infected animals. Journal of Virology 71:9685–9689
    [Google Scholar]
  7. Farquhar C. F., Dickinson A. G. 1986; Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. Journal of General Virology 67:463–473
    [Google Scholar]
  8. Fraser H., Farquhar C. F. 1987; Ionising radiation has no influence on scrapie incubation period in mice. Veterinary Microbiology 13:211–223
    [Google Scholar]
  9. Fraser H., Brown K. L., Stewart K., McConnell I., McBride P., Williams A. 1996; Replication of scrapie in spleens of SCID mice follows reconstitution with wild–type mouse bone marrow. Journal of General Virology 77:1935–1940
    [Google Scholar]
  10. Grathwohl K. U. D., Horiuchi M., Ishiguro N., Shinagawa M. 1996; Improvement of PrPSc–detection in mouse spleen early at the preclinical stage of scrapie with collagenase–completed tissue homogenization and Sarkosyl-NaCl extraction of PrPSc . Archives of Virology 141:1863–1874
    [Google Scholar]
  11. Kimberlin R. H., Walker C. A. 1979; Pathog enesis of mouse scrapie: dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. Journal of Comparative Pathology 89:551–562
    [Google Scholar]
  12. Kimberlin R. H., Walker C. A. 1986; Pathog enesis of scrapie (strain 263K) in hamsters infected intracerebrally, intraperitoneally or intraocularly. Journal of General Virology 67:255–263
    [Google Scholar]
  13. Kimberlin R. H., Walker C. A. 1988; Pathog enesis of experimental scrapie. Ciba Foundation Symposia 135:37–62
    [Google Scholar]
  14. Klein M. A., Frigg R., Flechsig E., Raeber A. J., Kalinke U., Bluethmann H., Bootz F., Suter M., Zinkernagel R. M., Aguzzi A. 1996; A crucial role for B cells in neuroinvasive scrapie. Nature 390:687–690
    [Google Scholar]
  15. Lasmézas C. I., Cesbron J. Y., Deslys J.-P., Demaimay R., Adjou K. T., Rioux R., Lemaire C., Locht C., Dormont D. 1996a; Immune system-dependent and -independent replication of the scrapie agent. Journal of Virology 70:1292–1295
    [Google Scholar]
  16. Lasmézas C. I., Deslys J.-P., Demaimay R., Adjou K. T., Hauw J.-J., Dormont D. 1996b; Strain specific and common pathogenic events in murine models of scrapie and bovine spongiform encephalopathy. Journal of General Virology 77:1601–1609
    [Google Scholar]
  17. Mabbott N. A., Farquhar C. F., Brown K. L., Bruce M. E. 1998; Involvement of the immune system in TSE pathogenesis. Immunology Today 19:201–203
    [Google Scholar]
  18. McBride P. A., Eikelenboom P., Kraal G., Fraser H., Bruce M. E. 1992; PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie–infected mice. Journal of Pathology 168:413–418
    [Google Scholar]
  19. Manuelidis L., Fritch W., Xi Y. G. 1997; Evolution of a strain of CJD that induces BSE-like plaques. Science 277:94–98
    [Google Scholar]
  20. Muramoto T., Kitamoto T., Tateishi J., Goto I. 1993; Accumulation of abnormal prion protein in mice infected with Creutzfeldt-Jakob Disease via intraperitoneal route: a sequential study. American Journal of Pathology 143:1470–1479
    [Google Scholar]
  21. O’Rourke K. I., Huff T. P., Leathers C. W., Robinson M. M., Gorham J. R. 1994; SCID mouse spleen does not support scrapie agent replication. Journal of General Virology 75:1511–1514
    [Google Scholar]
  22. Prusiner S. B. 1982; Novel proteinaceous infectious particles cause scrapie. Science 216:136–144
    [Google Scholar]
  23. Riggs J., Stowers R. 1996; Ability of spleen, peritoneal cavity, and lymph node B cells to reconstitute serum immunoglobulin in SCID mice. Immunology 88:20–27
    [Google Scholar]
  24. Van Keulen L. J. M., Schreuder B. E. C., Meloen R. H., Mooij-Harkes G., Vromans M. E. W., Langeveld J. P. M. 1996; Immuno– histochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. Journal of Clinical Microbiology 34:1228–1231
    [Google Scholar]
  25. Vertut–Dol A., Ohnishi S. I., Bolard J. 1994; The endocytic process in CHO cells, a toxic pathway of the polyene antibiotic amphotericin B. Antimicrobial Agents and Chemotherapy 38:2373–2379
    [Google Scholar]
  26. Wolf J. E., Massof S. E. 1990; In vivo activation of macrophage oxidative burst activity by cytokines and amphotericin B. Infection and Immunity 58:1296–1300
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-7-1873
Loading
/content/journal/jgv/10.1099/0022-1317-80-7-1873
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error