1887

Abstract

Infection of human B lymphocytes with Epstein-Barr virus (EBV) in vitro induces a G0 to G1 transition followed by DNA synthesis and cell division. The virus activation of the cell cycle closely mimics the antigen-dependent normal B cell activation pathway. Infected B cells undergo blast transformation followed by the emergence of immortalized lymphoblastoid cell lines. Numerous cellular proteins are switched on in the infected cells, including p53. In view of the frequent association of wild-type p53 (wtp53) expression with growth arrest and apoptosis, p53 expression, cell viability (absence of apoptosis) and cell cycle progression at the single cell level during the first week after EBV infection were assessed. The rate of EBV infection was scored by EBNA-5 staining between 20 and 72 h after infection and varied between 20 and 25% of the cell population. All EBNA-5-positive blasts were p53-positive as well. Double staining for p53 and for DNA ends (TUNEL) revealed that p53-positivity and apoptosis were mutually exclusive. Quantification of the DNA content by Hoechst staining and computer-assisted image analysis showed that a fraction of the p53-positive blasts had a DNA content higher than 2N, indicating entry into the S/G2 phases. Double p53 and BrdU staining of the cells, pulse-labelled with BrdU, revealed that 65% of the p53-positive blasts were in S phase 3 days after infection. Similarly, B cell activation by CD40L and IL-4 induced p53 expression without any adverse effect on cell cycle progression. Therefore, the phenomenon is not EBV-specific but correlates with immunoblast activation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-4-987
1999-04-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/4/0800987a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-4-987&mimeType=html&fmt=ahah

References

  1. Allday M. J., Inman G. J., Crawford D. H., Farrell P. J. 1995a; DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO Journal 14:4994–5005
    [Google Scholar]
  2. Allday M. J., Sinclair A., Parker G., Crawford D. H., Farrell P. J. 1995b; Epstein–Barr virus efficiently immortalizes human B cells without neutralizing the function of p53. EMBO Journal 14:1382–1391
    [Google Scholar]
  3. Baker S. J., Markowitz S., Fearon E. R., Willson J. K., Vogelstein B. 1990; Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915
    [Google Scholar]
  4. Banchereau J., de Paoli P., Valle A., Garcia E., Rousset F. 1991; Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 251:70–72
    [Google Scholar]
  5. Blaydes J. P., Gire V., Rowson J. M., Wynford-Thomas D. 1997; Tolerance of high levels of wild-type p53 in transformed epithelial cells dependent on auto-regulation by mdm-2. Oncogene 14:1859–1868
    [Google Scholar]
  6. Brugarolas J., Chandrasekaran C., Gordon J. I., Beach D., Jacks T., Hannon G. J. 1995; Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–557
    [Google Scholar]
  7. Caelles C., Helmberg A., Karin M. 1994; p53-dependent apoptosis in the absence of transcriptional activation of p53 target genes (see comments). Nature 370:220–223
    [Google Scholar]
  8. Chen W., Cooper N. R. 1996; Epstein–Barr virus nuclear antigen 2 and latent membrane protein independently transactivate p53 through induction of NF-kappaB activity. Journal of Virology 70:4849–4853
    [Google Scholar]
  9. Chen J., Wu X., Lin J., Levine A. J. 1996a; mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Molecular and Cellular Biology 16:2445–2452
    [Google Scholar]
  10. Chen X., Ko L. J., Jayaraman L., Prives C. 1996b; p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response oftumor cells. Genes and Development 10:2438–2451
    [Google Scholar]
  11. Crook T., Marston N. J., Sara E. A., Vousden K. H. 1994; Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79:817–827
    [Google Scholar]
  12. Deng C., Zhang P., Harper J. W., Elledge S. J., Leder P. 1995; Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684
    [Google Scholar]
  13. Edwards R. H., Raab-Traub N. 1994; Alterations of the p53 gene in Epstein–Barr virus-associated immunodeficiency-related lymphomas. Journal of Virology 68:1309–1315
    [Google Scholar]
  14. Farrell P. J., Allan G. J., Shanahan F., Vousden K. H., Crook T. 1991; p53 is frequently mutated in Burkitt′s lymphoma cell lines. EMBO Journal 10:2879–2887
    [Google Scholar]
  15. Finke J., Rowe M., Ernberg I., Rosen A., Dillner J., Klein G. 1987; Monoclonal and polyclonal antibodies against Epstein–Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt’s lymphoma and lymphoblastoid cell lines. Journal of Virology 61:3870–3878
    [Google Scholar]
  16. Fries K. L., Miller W. E., Raab-Traub N. 1996; Epstein–Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. Journal of Virology 70:8653–8659
    [Google Scholar]
  17. Garrone P., Neidhardt E. M., Garcia E., Galibert L., van Kooten C., Banchereau J. 1995; Fas ligation induces apoptosis of CD40-activated human B lymphocytes. Journal of Experimental Medicine 182:1265–1273
    [Google Scholar]
  18. Gavrieli Y., Sherman Y., Ben-Sasson S. A. 1992; Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Journal of Cell Biology 119:493–501
    [Google Scholar]
  19. Haupt Y., Maya R., Kazaz A., Oren M. 1997; Mdm2 promotes the rapid degradation of p53. Nature 387:296–299
    [Google Scholar]
  20. Jones S. N., Roe A. E., Donehower L. A., Bradley A. 1995; Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208
    [Google Scholar]
  21. Kieff E. 1996; Epstein–Barr virus and its replication. In Fields Virology 3rd edn pp 2343–2396 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  22. Ko L. J., Prives C. 1996; p53: puzzle and paradigm. Genes and Development 10:1054–1072
    [Google Scholar]
  23. Kubbutat M. H., Jones S. N., Vousden K. H. 1997; Regulation of p53 stability by Mdm2. Nature 387:299–303
    [Google Scholar]
  24. Lalle P., Moyret-Lalle C., Wang Q., Vialle J.-M., Navarro C., Bressac de Paillerets B., Magaud J.-P., Ozturk M. 1995; Genomic stability and wild type p53 function of lymphoblastoid cells with germ-line p53 mutation. Oncogene 10:2447–2454
    [Google Scholar]
  25. Lassus P., Ferlin M., Piette J., Hibner U. 1996; Anti-apoptotic activity of low levels of wild-type p53. EMBO Journal 15:4566–4573
    [Google Scholar]
  26. Liu Y. J., Joshua D. E., Williams G. T., Smith C. A., Gordon J., MacLennan I. C. 1989; Mechanism of antigen-driven selection in germinal centres. Nature 342:929–931
    [Google Scholar]
  27. Lukas J., Bartkova J., Welcker M., Petersen O. W., Peters G., Strauss M., Bartek J. 1995; Cyclin D2 is a moderately oscillating nucleoprotein required for G1 phase progression in specific cell types. Oncogene 10:2125–2134
    [Google Scholar]
  28. Lutzker S. G., Levine A. J. 1996; A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nature Medicine 2:804–810
    [Google Scholar]
  29. Maestro R., Gloghini A., Doglioni C., Piccinin S., Vukosavljevic T., Gasparotto D., Carbone A., Boiocchi M. 1997; Human non-Hodgkin’s lymphomas overexpress a wild-type form of p53 which is a functional transcriptional activator of the cyclin-dependent kinase inhibitor p21. Blood 89:2523–2528
    [Google Scholar]
  30. Mercer W. E., Baserga R. 1985; Expression of the p53 protein during the cell cycle of human peripheral blood lymphocytes. Experimental Cell Research 160:31–46
    [Google Scholar]
  31. Montes de Oca Luna R., Wagner D. S., Lozano G. 1995; Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206
    [Google Scholar]
  32. Okan I., Wang Y., Chen F., Hu L. F., Imreh S., Klein G., Wiman K. G. 1995; The EBV-encoded LMP1 protein inhibits p53-triggered apoptosis but not growth arrest. Oncogene 11:1027–1031
    [Google Scholar]
  33. Oren M., Reich N. C., Levine A. J. 1982; Regulat ion of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. Molecular and Cellular Biology 2:443–449
    [Google Scholar]
  34. Pagano M., Theodoras A. M., Tam S. W., Draetta G. F. 1994; Cyclin D1-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes and Development 8:1627–1639
    [Google Scholar]
  35. Perry M. E., Piette J., Zawadzki J. A., Harvey D., Levine A. J. 1993; The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proceedings of the National Academy of Sciences, USA 90:11623–11627
    [Google Scholar]
  36. Picksley S. M., Lane D. P. 1993; The p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53?. Bioessays 15:689–690
    [Google Scholar]
  37. Pietenpol J. A., Tokino T., Thiagalingam S., el Deiry W. S., Kinzler K. W., Vogelstein B. 1994; Sequence-specific transcriptional activation is essential for growth suppression by p53. Proceedings of the National Academy of Sciences, USA 91:1998–2002
    [Google Scholar]
  38. Polyak K., Waldman T., He T. C., Kinzler K. W., Vogelstein B. 1996; Genetic determinants of p53-induced apoptosis and growth arrest. Genes and Development 10:1945–1952
    [Google Scholar]
  39. Reich N. C., Levine A. J. 1984; Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature 308:199–201
    [Google Scholar]
  40. Selivanova G., Wiman K. G. 1995; p53: a cell cycle regulator activated by DNA damage. Advances in Cancer Research 66:143–180
    [Google Scholar]
  41. Shohat O., Greenberg M., Reisman D., Oren M., Rotter V. 1987; Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene 1:277–283
    [Google Scholar]
  42. Szekely L., Pokrovskaja K., Jiang W.-Q., Selivanova G., Lowbeer M., Ringertz N., Klein G., Wiman K. G. 1995; Resting B-cells, EBV-infected B-blasts and established lymphoblastoid cell lines differ in their RB, p53 and EBNA-5 expression patterns. Oncogene 10:1869–1874
    [Google Scholar]
  43. Wendel-Hansen V., Rosen A., Klein G. 1987; EBV-transformed lymphoblastoid cell lines down-regulate EBNA in parallel with secretory differentiation. International Journal of Cancer 39:404–408
    [Google Scholar]
  44. Williams K. J., Heighway J., Birch J. M., Norton J. D., Scott D. 1996; No defect in G1/S cell cycle arrest in irradiated Li-Fraumeni lymphoblastoid cell lines. British Journal of Cancer 74:698–703
    [Google Scholar]
  45. Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. 1991; Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352345–347
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-4-987
Loading
/content/journal/jgv/10.1099/0022-1317-80-4-987
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error