1887

Abstract

In order to elucidate the mechanisms of hepadnavirus evolution in vivo and to trace the fate of known quasispecies in a single animal during the acute phase of infection, a woodchuck (Marmota monax) was infected with the hepadnavirus woodchuck hepatitis B virus (WHV). Woodchuck 197 (W197) was injected intravenously with pooled sera collected from a chronic carrier that had been infected originally with a molecular clone of known genome sequence (WHV7). Viral genome variants from both the inoculum and the follow-up sera from W197 were characterized for the presence of quasispecies related to the WHV7 sequence. Interestingly, WHV7-related genomes were predominant 6 weeks post-infection (p.i.), whereas a highly heterogeneous virus population was present in the first viraemic serum (4 weeks p.i.). Using WHV7 as the prototype, the variability of the Pol and PreS/S regions in the first 11 weeks p.i. has been calculated. The sequence population in serum collected 6 weeks p.i. was highly homogeneous, with a mean variability of 0.36% in the region analysed. Mean variability values ranging from 0.82% to 1.61% were found in quasispecies from the other sera. The presence of possible selective pressure was analysed by means of the non-synonymous versus synonymous variation ratio (dn/d5). We found that the dn/d5 values were stable for the S ORF (ranging from 2.6 to 3.0), whereas a wider range was observed for the Pol ORF (from 1.4 to 3.0). Furthermore, from the analysis of the variability of the codon positions for the two overlapping ORFs it was found that, in most cases, non-synonymous mutations at position 1 of the Pol ORF (position 3 of the S ORF) corresponded to synonymous variation in the S (Pol) ORF, indicating independent evolution of the encoded proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-3-617
1999-03-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/3/0800617a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-3-617&mimeType=html&fmt=ahah

References

  1. Bertoni R., Sidney J., Fowler P., Chesnut R. W., Chisari F. V., Sette A. 1997; Human histocompatibility leukocyte antigen-binding super-motifs predict broadly cross-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. Journal of Clinical Investigation 100:503–513
    [Google Scholar]
  2. Chisari F. V. 1997; Cytotoxic T cells and viral hepatitis. Journal of Clinical Investigation 99:1472–1477
    [Google Scholar]
  3. Cohen J. I., Miller R. H., Rosenblum B., Denniston K., Gerin J. L., Purcell R. H. 1988; Sequence comparison of woodchuck hepatitis virus replicative forms shows conservation of the genome. Virology 162:12–20
    [Google Scholar]
  4. Domingo E., Holland J. J. 1994; Mutation rates and rapid evolution of RNA viruses. In The Evolutionary Biology of Viruses pp 161–184 Edited by Morse S. D. New York: Raven Press;
    [Google Scholar]
  5. Eckert K. A., Kunkel T. A. 1990; High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Research 18:3739–3744
    [Google Scholar]
  6. Eigen M., Biebricher C. 1988; Sequence space and quasispecies distribution. In RNA Genetics vol 3 pp 211–245 Edited by Domingo E., Holland J. J., Alquist P. Boca Raton: CRC Press;
    [Google Scholar]
  7. Felsenstein J. 1993 PHYLIP (phylogeny inference package) version 3.5c University of Washington; Seattle, WA, USA:
    [Google Scholar]
  8. Fiume L., Di Stefano G., Busi C., Mattioli A., Rapicetta M., Giuseppetti R., Ciccaglione A. R., Argentini C. 1995; Inhibition of woodchuck hepatitis virus replication by adenine arabinoside monophosphate coupled to lactosaminated poly-l-lysine and administered by intramuscular route. Hepatology 22:1072–1077
    [Google Scholar]
  9. Fiume L., Di Stefano G., Busi C., Mattioli A., Gervasi G. B., Bertini M., Bartoli C., Catalani R., Caccia G., Farina C., Fissi A., Pieroni O., Giuseppetti R., D’Ugo E., Bruni R., Rapicetta M. 1997; Hepatotropic conjugate of adenine arabinoside monophosphate with lactosaminated poly-l-lysine. Synthesis of the carrier and pharmacological properties of the conjugate. Journal of Hepatology 26:253–259
    [Google Scholar]
  10. Gunther S., Paulij W., Meisel H., Will H. 1998; Analysis of hepatitis B virus populations in an interferon-alpha-treated patient reveals predominant mutations in the C-gene and changing e-antigenicity. Virology 244:146–160
    [Google Scholar]
  11. Hughes E. S., Bell J. E., Simmonds P. 1997; Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes. Journal of Virology 71:1272–1280
    [Google Scholar]
  12. Julias J. G., Kim T., Arnold G., Pathak V. K. 1997; The antiretrovirus drug 3′-azido-3′-deoxythymidine increases the retrovirus mutation rate. Journal of Virology 71:4254–4263
    [Google Scholar]
  13. Koziel M. J. 1996; Immunology of viral hepatitis. American Journal of Medicine 100:98–109
    [Google Scholar]
  14. Lane T. E., Buchmeier M. J., Watry D. D., Jakubowski D. B., Fox H. S. 1995; Serial passage of microglial SIV results in selection of homogeneous env quasispecies in the brain. Virology 212:458–465
    [Google Scholar]
  15. Lau J. Y. N., Wright T. L. 1993; Molecular virology and pathogenesis of hepatitis B. Lancet 342:1335–1340
    [Google Scholar]
  16. Lee C. H., Gilbertson D. L., Novella I. S., Huerta R., Domingo E., Holland J. J. 1997; Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. Journal of Virology 71:3636–3640
    [Google Scholar]
  17. Li D. H., Newbold J. E., Cullen J. M. 1996; Natural populations of woodchuck hepatitis virus contain variant precore and core sequences including a premature stop codon in the epsilon motif. Virology 220:256–262
    [Google Scholar]
  18. McDonald R. A., Mayers D. L., Chung R. C., Wagner K. F., Ratto-Kim S., Birx D. L., Michael N. L. 1997; Evolution of human immunodeficiency virus type 1 env sequence variation in patients with diverse rates of disease progression and T-cell function. Journal of Virology 71:1871–1879
    [Google Scholar]
  19. Martinez M. A., Verdaguer N., Mateu M. G., Domingo E. 1997; Evolution subverting essentiality: dispensability of the cell attachment Arg–Gly–Asp motif in multiply passaged foot-and-mouth disease virus. Proceedings of the National Academy of Sciences, USA 94:6798–6802
    [Google Scholar]
  20. Menne S., Maschke J., Tolle T. K., Lu M., Roggendorf M. 1997; Characterization of T-cell response to woodchuck hepatitis virus core protein and protection of woodchucks from infection by immunization with peptides containing a T-cell epitope. Journal of Virology 71:65–74
    [Google Scholar]
  21. Menne S., Maschke J., Lu M., Grosse-Wilde H., Roggendorf M. 1998; T-cell response to woodchuck hepatitis virus (WHV) antigens during acute self-limited WHV infection and convalescence and after viral challenge. Journal of Virology 72:6083–6091
    [Google Scholar]
  22. Meyer B. J., Southern P. J. 1997; A novel type of defective viral genome suggests a unique strategy to establish and maintain persistent lymphocytic choriomeningitis virus infections. Journal of Virology 71:6757–6764
    [Google Scholar]
  23. Miller R. H., Girones R., Cote P. J., Hornbuckle W. E., Chestnut T., Baldwin B. H., Korba B. E., Tennant B. C., Gerin J. L., Purcell R. H. 1990; Evidence against a requisite role for defective virus in the establishment of persistent hepadnavirus infections. Proceedings of the National Academy of Sciences, USA 87:9329–9332
    [Google Scholar]
  24. Norder H., Ebert J. W., Fields H. A., Mushahwar I. K., Magnius L. O. 1996; Complete sequencing of a gibbon hepatitis B virus genome reveals a unique genotype distantly related to the chimpanzee hepatitis B virus. Virology 218:214–223
    [Google Scholar]
  25. Pult I., Chouard T., Wieland S., Klemenz R., Yaniv M., Blum H. E. 1997; A hepatitis B virus mutant with a new hepatocyte nuclear factor 1 binding site emerging in transplant-transmitted fulminant hepatitis B. Hepatology 25:1507–1515
    [Google Scholar]
  26. Rowe C. L., Baker S. C., Nathan M. J., Fleming J. O. 1997; Evolution of mouse hepatitis virus: detection and characterization of spike deletion variants during persistent infection. Journal of Virology 71:2959–2969
    [Google Scholar]
  27. Salvatori F., Masiero S. A., Giaquinto C., Wade C. M., Leigh Brown A. J., Chieco-Bianchi L., De Rossi A. 1997; Evolution of human immunodeficiency virus type 1 in perinatally infected infants with rapid and slow progression to disease. Journal of Virology 71:4694–4706
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Schodel F., Weimer T., Fernholz D., Schneider R., Sprengel R., Wildner G., Will H. 1991; The biology of avian hepatitis B viruses. In Molecular Biology of the Hepatitis B Virus pp 53–80 Edited by McLachlan A. Boca Raton: CRC Press;
    [Google Scholar]
  30. Seeger C., Ganem D., Varmus H. E. 1984; Nucleotide sequence of an infectious molecularly cloned genome of ground squirrel hepatitis virus. Journal of Virology 51:367–375
    [Google Scholar]
  31. Smith S. W., Overbeek R., Woese C. R., Gilbert W., Gillevet P. M. 1994; The genetic data environment: an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences 10:671–675
    [Google Scholar]
  32. Sprengel R., Kaleta E. F., Will H. 1988; Isolation and characterization of a hepatitis B virus endemic in herons. Journal of Virology 62:3832–3839
    [Google Scholar]
  33. Sterneck M., Gunther S., Santantonio T., Fischer L., Broelsch C. E., Greten H., Will H. 1996; Hepatitis B virus genomes of patients with fulminant hepatitis do not share a specific mutation. Hepatology 24:300–306
    [Google Scholar]
  34. Sterneck M., Gunther S., Gerlach J., Naoumov N. V., Santantonio T., Fischer L., Rogiers X., Greten H., Williams R., Will H. 1997; Hepatitis B virus sequence changes evolving in liver transplant recipients with fulminant hepatitis. Journal of Hepatology 26:754–764
    [Google Scholar]
  35. Sterneck M., Kalinina T., Otto S., Gunther S., Fischer L., Burdelski M., Greten H., Broelsch C. E., Will H. 1998; Neonatal fulminant hepatitis B: structural and functional analysis of complete hepatitis B virus genomes from mother and infant. Journal of Infectious Diseases 177:1378–1381
    [Google Scholar]
  36. Testut P., Renard C. A., Terradillos O., Vitvitski-Trepo L., Tekaia F., Degott C., Blake J., Boyer B., Buendia M. A. 1996; A new hepadnavirus endemic in arctic ground squirrels in Alaska. Journal of Virology 70:4210–4219
    [Google Scholar]
  37. Wong J. K., Ignacio C. C., Torriani F., Havlir D., Fitch N. J. S., Richman D. D. 1997; In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. Journal of Virology 71:2059–2071
    [Google Scholar]
  38. Zhang L., Diaz R. S., Ho D. D., Mosley J. W., Busch M. P., Mayer A. 1997; Host-specific driving force in human immunodeficiency virus type 1 evolution in vivo . Journal of Virology 71:2555–2561
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-3-617
Loading
/content/journal/jgv/10.1099/0022-1317-80-3-617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error