1887

Abstract

Co-encapsidation of retroviral RNAs into virus particles allows for the generation of recombinant proviruses through events of template switching during reverse transcription. By use of a forced recombination system based on recombinational rescue of replication- defective primer binding site-impaired Akv–MLV-derived vectors, we here examine putative genetic interactions between vector RNAs and copackaged endogenous retroviral RNAs of the murine leukaemia virus (MLV) and VL30 retroelement families. We show (i) that MLV recombination is not blocked by nonhomology within the 5′ untranslated region harbouring the supposed RNA dimer-forming -elements and (ii) that copackaged retroviral RNAs can recombine despite pronounced sequence dissimilarity at the cross-over site(s) and within parts of the genome involved in RNA dimerization, encapsidation and strand transferring during reverse transcription. We note that recombination-based rescue of primer binding site knock-out retroviral vectors may constitute a sensitive assay to register putative genetic interactions involving endogenous retroviral RNAs present in cells of various species.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-11-2957
1999-11-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/11/0802957a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-11-2957&mimeType=html&fmt=ahah

References

  1. Adams S. E., Ratthjen D. D., Stanway C. A., Fulton C. A., Malin M. H., Wilson W., Odgen T., King L., Kingsman S., Kingsman A. J.. 1988; Complete nucleotide sequence of mouse VL30 retroelement. Molecular and Cellular Biology8:2989–2998
    [Google Scholar]
  2. Anderson J. A., Teufel R. J.II., Yin P. D., Hu W.-S.. 1998; Correlated template-switching events during minus-strand DNA synthesis: a mechanism for high interference during retroviral recombination. Journal of Virology72:1186–1194
    [Google Scholar]
  3. Auerswald E. A., Ludwig G., Schaller H.. 1981; Structural analysis of Tn5. Cold Spring Harbor Symposia on Quantitative Biology45:107–113
    [Google Scholar]
  4. Beck E., Ludwig G., Auerswald E. A., Reiss B., Schaller H.. 1982; Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene19:327–336
    [Google Scholar]
  5. Berkhout B., van Wamel J. L. B.. 1996; Role of the DIS hairpin in replication of human immunodeficiency virus type 1. Journal of Virology70:6723–6732
    [Google Scholar]
  6. Chakraborty A. K., Zink M. A., Hodgson C. P.. 1994; Transmission of endogenous VL30 retrotransposons by helper cells used in gene therapy. Cancer Gene Therapy1:113–118
    [Google Scholar]
  7. Chong H., Vile R. G.. 1996; Replication-competent retrovirus produced by a ‘split-function’ third generation amphotropic packaging cell line. Gene Therapy3:624–629
    [Google Scholar]
  8. Chong H., Starkey W., Vile R. G.. 1998; A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. Journal of Virology72:2663–2670
    [Google Scholar]
  9. Clever J. L., Parslow T. G.. 1997; Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization and encapsidation. Journal of Virology71:3407–3414
    [Google Scholar]
  10. Clever J. L., Wong M. L., Parslow T. G.. 1996; Requirements for kissing-loop-mediated dimerization of human immunodeficiency virus RNA. Journal of Virology70:5902–5908
    [Google Scholar]
  11. Coffin J. M.. 1979; Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. Journal of General Virology42:1–26
    [Google Scholar]
  12. Colicelli J., Goff S. P.. 1987a; Identification of endogenous retroviral sequences as potential donors for recombinational repair of mutant retroviruses: positions of crossover points. Virology160:518–522
    [Google Scholar]
  13. Colicelli J., Goff S. P.. 1987b; Isolation of a recombinant murine leukemia virus utilizing a new primer tRNA. Journal of Virology57:37–45
    [Google Scholar]
  14. Fisher J., Goff S. P.. 1998; Mutational analysis of stem–loops in the RNA packaging signal of the Moloney murine leukemia virus. Virology244:133–145
    [Google Scholar]
  15. Fossé P., Motté N., Roumier A., Gabus C., Muriaux D., Darlix J.-L., Paoletti J.. 1996; A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization. Biochemistry35:16601–16609
    [Google Scholar]
  16. Gilboa E., Mitra S. W., Goff S., Baltimore D.. 1979; A detailed model for reverse transcription and tests of crucial aspects. Cell18:93–100
    [Google Scholar]
  17. Girard P.-M., Bonnet-Mathonière B., Muriaux D., Paoletti J.. 1995; A short autocomplementary sequence in the 5′ leader region is responsible for dimerization of MoMuLV genomic RNA. Biochemistry34:9785–9794
    [Google Scholar]
  18. Haddrick M., Lear A. L., Cann A. J., Heaphy S.. 1996; Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. Journal of Molecular Biology259:58–68
    [Google Scholar]
  19. Hatzoglou M., Hodgson C. P., Mularo F., Hanson R. W.. 1990; Efficient packaging of a specific VL30 retroelement by Ψ2 cells which produce MoMLV recombinant retroviruses. Human Gene Therapy1:385–397
    [Google Scholar]
  20. Hodgson C. P., Fisk R. Z., Arora P., Chotani M.. 1990; Nucleotide sequence of mouse virus- like (VL30) retrotransposon BVL-1. Nucleic Acids Research18:673
    [Google Scholar]
  21. Hu W.-S., Temin H. M.. 1990a; Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudoploidy and high rate of genetic recombination. Proceedings of the National Academy of Sciences USA87:1556–1560
    [Google Scholar]
  22. Hu W.-S., Temin H. M.. 1990b; Retroviral recombination and reverse transcription. Science250:1227–1233
    [Google Scholar]
  23. Hu W.-S., Temin H. M.. 1992; Effect of gamma radiation on retroviral recombination. Journal of Virology66:4457–4463
    [Google Scholar]
  24. Hu W.-S., Bowman E. H., Delviks K. A., Pathak V. K.. 1997; Homologous recombination occurs in a distinct retroviral subpopulation and exhibits high negative interference. Journal of Virology71:6028–6036
    [Google Scholar]
  25. Junghans R. P., Boone L. R., Skalka A. M.. 1982; Retroviral DNA H structures: displacement–assimilation model for recombination. Cell30:53–62
    [Google Scholar]
  26. Laughrea M., Jetté L.. 1994; A 19- nucleotide sequence upstream of the 5′ major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry33:13464–13474
    [Google Scholar]
  27. Laughrea M., Jetté L., Mak J., Kleiman L., Liang C., Wainberg M. A.. 1997; Mutations in the kissing-loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. Journal of Virology71:3397–3406
    [Google Scholar]
  28. Lear A. L., Haddrick M., Heaphy S.. 1995; A study of the dimerization of Rous sarcoma virus RNA in vitro and in vivo. Virology212:47–57
    [Google Scholar]
  29. Lund A. H., Duch M., Lovmand J., Jørgensen P., Pedersen F. S.. 1993; Mutated primer binding sites interacting with different tRNAs allow efficient murine leukemia virus replication. Journal of Virology67:7125–7130
    [Google Scholar]
  30. Mann R., Mulligan R. C., Baltimore D.. 1983; Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell33:153–159
    [Google Scholar]
  31. Martinelli S. C., Goff S. P.. 1990; Rapid reversion of a deletion mutation in Moloney murine leukemia virus by recombination with a closely related endogenous provirus. Virology174:135–144
    [Google Scholar]
  32. Mikkelsen J. G., Lund A. H., Kristensen K. D., Duch M., Sørensen M. S., Jørgensen P., Pedersen F. S.. 1996; A preferred region for recombinational patch repair in the 5′ untranslated region of primer binding site-impaired murine leukemia virus vectors. Journal of Virology70:1439–1447
    [Google Scholar]
  33. Mikkelsen J. G., Lund A. H., Dybkær K., Duch M., Pedersen F. S.. 1998a; Extended minus strand DNA as template for R–U5-mediated second strand transfer in recombinational rescue of PBS-modified retroviral vectors. Journal of Virology72:2519–2525
    [Google Scholar]
  34. Mikkelsen J. G., Lund A. H., Duch M., Pedersen F. S.. 1998b; Recombination in the 5′ leader of murine leukemia virus is accurate and influenced by sequence identity with a strong bias toward the kissing-loop dimerization region. Journal of Virology72:6967–6978
    [Google Scholar]
  35. Mougel M., Zhang Y., Barklis E.. 1996; Cis -active structural motifs involved in specific encapsidation of Moloney murine leukemia virus RNA. Journal of Virology70:5043–5050
    [Google Scholar]
  36. Murphy J. E., Goff S. P.. 1994; Forced integration of Moloney murine leukemia virus DNA with a mutant integration site occurs through recombination with VL30 DNA. Virology204:458–461
    [Google Scholar]
  37. Paillart J.-C., Marquet R., Skripkin E., Ehresmann B., Ehresmann C.. 1994; Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. Journal of Biological Chemistry269:27486–27493
    [Google Scholar]
  38. Paillart J.-C., Berthoux L., Ottman M., Darlix J.-L., Marquet R., Ehresmann B., Ehresmann C.. 1996a; A dual role of the putative dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. Journal of Virology70:8348–8354
    [Google Scholar]
  39. Paillart J.-C., Skripkin E., Ehresmann B., Ehresmann C., Marquet R.. 1996b; A loop–loop ‘kissing’ complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proceedings of the National Academy of Sciences USA93:5572–5577
    [Google Scholar]
  40. Paillart J.-C., Westhof E., Ehresmann C., Ehresmann B., Marquet R.. 1997; Non-canonical interactions in a kissing-loop complex: the dimerization initiation site of HIV-1 genomic RNA. Journal of Molecular Biology270:36–49
    [Google Scholar]
  41. Patience C., Takeuchi Y., Cosset F.-L., Weiss R. A.. 1998; Packaging of endogenous retroviral sequences in retroviral vectors produced by murine and human packaging cells. Journal of Virology72:2671–2676
    [Google Scholar]
  42. Prats A.-C., Roy C., Wang P., Erard M., Housset V., Gabus C., Paoletti C., Darlix J.-L.. 1990; cis elements and trans -acting factors involved in dimer formation of murine leukemia virus RNA. Journal of Virology64:774–783
    [Google Scholar]
  43. Purcell D. F., Broscius C. M., Vanin E. F., Buckler C. E., Nienhuis A. W., Martin M. A.. 1996; An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. Journal of Virology70:887–897
    [Google Scholar]
  44. St Louis D. C., Gotte D., Sanders-Buell E., Ritchey D. W., Salminen M. O., Carr J. K., McCutchan F. E.. 1998; Infectious molecular clones with the nonhomologous dimer initiation sequences found in different subtypes of human immunodeficiency virus type 1 can recombine and initiate a spreading infection in vitro. Journal of Virology72:3991–3998
    [Google Scholar]
  45. Sakuragi J.-I., Panganiban A. T.. 1997; Human immunodeficiency virus type 1 RNA outside the primary encapsidation and dimer linkage region affects RNA dimer stability in vivo. Journal of Virology71:3250–3254
    [Google Scholar]
  46. Scadden D. T., Fuller B., Cunningham J. M.. 1990; Human cells infected with retrovirus vectors acquire an endogenous murine provirus. Journal of Virology64:424–427
    [Google Scholar]
  47. Schwartzberg P., Colicelli J., Goff S. P.. 1985; Recombination between a defective retrovirus and homologous sequences in host DNA: reversion by patch repair. Journal of Virology53:719–726
    [Google Scholar]
  48. Scolnick E. M., Vass W. C., Howk R. S., Duesberg P. H.. 1979; Defective retrovirus- like 30S RNA species of rat and mouse cells are infectious if packaged by type C helper virus. Journal of Virology29:964–972
    [Google Scholar]
  49. Skripkin E., Paillart J.-C., Marquet R., Ehresmann B., Ehresmann C.. 1994; Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proceedings of the National Academy of Sciences USA91:4945–4949
    [Google Scholar]
  50. Stuhlmann H., Berg P.. 1992; Homologous recombination of copackaged retrovirus RNAs during reverse transcription. Journal of Virology66:2378–2388
    [Google Scholar]
  51. Tchénio T., Heidmann T.. 1995; The dimerization/packaging sequence is dispensable for both the formation of high-molecular-weight RNA complexes within retroviral particles and the synthesis of proviruses of normal structure. Journal of Virology69:1079–1084
    [Google Scholar]
  52. Torrent C., Gabus C., Darlix J.-L.. 1994; A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus–VL30-derived vectors for gene transfer. Journal of Virology68:661–667
    [Google Scholar]
  53. Van Beveren C., Coffin J., Hughes S.. 1985; Nucleotide sequences complemented with functional and structural analysis.. In RNA Tumor Viruses pp790–805 Edited by Weiss R., Teich N., Varmus H., Coffin J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  54. Vanin E. F., Kaloss M., Broscius C., Nienhuis A. W.. 1994; Characterization of replication-competent retroviruses from nonhuman primates with virus- induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. Journal of Virology68:4241–4250
    [Google Scholar]
  55. Yang S., Temin H. M.. 1994; A double hairpin structure is necessary for the efficient encapsidation of spleen necrosis virus retroviral RNA. EMBO Journal13:713–726
    [Google Scholar]
  56. Yin P. D., Hu W.-S.. 1997; RNAs from genetically distinct retroviruses can copackage and exchange genetic information in vivo. Journal of Virology71:6237–6242
    [Google Scholar]
  57. Yin P. D., Pathak V. K., Rowan A. E., Teufel R. J.II., Hu W.-S.. 1997; Utilization of nonhomologous minus- strand DNA transfer to generate recombinant retroviruses. Journal of Virology71:2487–2494
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-11-2957
Loading
/content/journal/jgv/10.1099/0022-1317-80-11-2957
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error