1887

Abstract

The influenza virus RNA (vRNA) promoter structure is known to consist of the 5′- and 3′-terminal sequences of the RNA, within very narrow boundaries of 16 and 15 nucleotides, respectively. A complete set of single nucleotide substitutions led to the previously proposed model of a binary hooked or ‘corkscrew’ conformation for the vRNA promoter when it interacts with the viral polymerase. This functional structure is confirmed here with a complete set of complementary double substitutions, of both the regular A:U and G:C type and also the G:U type of base-pair exchanges. The proposed structure consists of a six base-pair RNA rod in the distal element in conjunction with two stem–loop structures of two short-range base- pairs (positions 2–9; 3–8). These support an exposed tetranucleotide loop within each branch of the proximal element, in an overall oblique organization due to a central unpaired A residue at position 10 in the 5′ sequence. Long-range base-pairing between the entire 5′ and 3′ branches, as required for an unmodified ‘panhandle’ model, has been excluded for the proximal element, while it is known to represent the mode of interaction within the distal element. A large number of short-range base-pair exchanges in the proximal element constitute promoter-up mutations, which show activities several times above that of the wild- type in reporter gene assays. The unique overall conformation and rather few invariant nucleotides appear to be the core elements in vRNA recognition by polymerase and also in viral ribonucleoprotein packaging, to allow discrimination against the background of other RNA molecules in the cell.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-10-2565
1999-10-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/10/0802565a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-10-2565&mimeType=html&fmt=ahah

References

  1. Baudin, F. , Bach, C. , Cusack, S. & Ruigrok, R. W. H. ( 1994; ). Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO Journal 13, 3158-3165 .
    [Google Scholar]
  2. Cate, J. H. , Gooding, A. R. , Podell, E. , Zhou, K. , Golden, B. L. , Kundrot, C. E. , Cech, T. R. & Doudna, J. A. ( 1996; ). Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678-1685 .[CrossRef]
    [Google Scholar]
  3. Enami, M., Sharma, G., Benham, C. & Palese, P. ( 1991; ). An influenza virus containing nine different RNA segments. Virology 185, 291–298; corrigendum 186, 798.[CrossRef]
    [Google Scholar]
  4. Fields, S. & Winter, G. ( 1982; ). Nucleotide sequences of influenza virus segments 1 and 3 reveal mosaic structure of a small viral RNA segment. Cell 28, 303-313.[CrossRef]
    [Google Scholar]
  5. Flick, R. , Neumann, G. , Hoffmann, E. , Neumeier, E. & Hobom, G. ( 1996; ). Promoter elements in the influenza vRNA terminal structure. RNA 2, 1046-1057.
    [Google Scholar]
  6. Fodor, E. , Pritlove, D. C. & Brownlee, G. G. ( 1995; ). Characterization of the RNA-fork model of virion RNA in the initiation of transcription in influenza A virus. Journal of Virology 69, 4012-4019 .
    [Google Scholar]
  7. Fodor, E. , Palese, P. , Brownlee, G. G. & Garcia-Sastre, A. ( 1998; ). Attenuation of influenza A virus mRNA levels by promoter mutations. Journal of Virology 72, 6283-6290 .
    [Google Scholar]
  8. Gorman, C. M. , Moffat, L. F. & Howard, B. H. ( 1982; ). Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molecular and Cellular Biology 2, 1044-1051.
    [Google Scholar]
  9. Hsu, M. T. , Parvin, J. D. , Gupta, S. , Krystal, M. & Palese, P. ( 1987; ). Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proceedings of the National Academy of Sciences, USA 84, 8140-8144 .[CrossRef]
    [Google Scholar]
  10. Lamb, R. A. & Krug, R. M. ( 1996; ). Orthomyxoviridae : the viruses and their replication. In Fields Virology, pp. 1353-1395. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  11. Lee, Y. S. & Seong, B. L. ( 1996; ). Mutational analysis of influenza B virus RNA transcription in vitro. Journal of Virology 70, 1232-1236 .
    [Google Scholar]
  12. Li, X. & Palese, P. ( 1992; ). Mutational analysis of the promoter required for influenza virus virion RNA synthesis. Journal of Virology 66, 4331-4338 .
    [Google Scholar]
  13. Li, M. L. , Ramirez, B. C. & Krug, R. M. ( 1998; ). RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO Journal 17, 5844-5852 .[CrossRef]
    [Google Scholar]
  14. Luo, G. X. , Luytjes, W. , Enami, M. & Palese, P. ( 1991; ). The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. Journal of Virology 65, 2861-2867 .
    [Google Scholar]
  15. Luytjes, W. , Krystal, M. , Enami, M. , Pavin, J. D. & Palese, P. ( 1989; ). Amplification, expression, and packaging of a foreign gene by influenza virus. Cell 59, 1107-1113 .[CrossRef]
    [Google Scholar]
  16. Mukaigawa, J. , Hatada, E. , Fukuda, R. & Shimizu, K. ( 1991; ). Involvement of the influenza A virus PB2 protein in the regulation of viral gene expression. Journal of General Virology 72, 2661-2670 .[CrossRef]
    [Google Scholar]
  17. Neumann, G. & Hobom, G. ( 1995; ). Mutational analysis of influenza virus promoter elements in vivo. Journal of General Virology 76, 1709-1717 .[CrossRef]
    [Google Scholar]
  18. Neumann, G. , Zobel, A. & Hobom, G. ( 1994; ). RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202, 477-479.[CrossRef]
    [Google Scholar]
  19. Piccone, M. E. , Fernandez-Sesma, A. & Palese, P. ( 1993; ). Mutational analysis of the influenza virus vRNA promoter. Virus Research 28, 99-112.[CrossRef]
    [Google Scholar]
  20. Pleschka, S. , Jaskunas, R. , Engelhardt, O. G. , Zürcher, T. , Palese, P. & Garcia-Sastre, A. ( 1996; ). A plasmid-based reverse genetics system for influenza A virus. Journal of Virology 70, 4188-4192 .
    [Google Scholar]
  21. Pritlove, D. C. , Poon, L. L. M. , Devenish, L. J. , Leahy, M. B. & Brownlee, G. G. ( 1999; ). A hairpin loop at the 5′ end of influenza A virus virion RNA is required for synthesis of poly(A)+ mRNA in vitro. Journal of Virology 73, 2109-2114 .
    [Google Scholar]
  22. Stoeckle, M. Y. , Shaw, M. W. & Choppin, P. W. ( 1987; ). Segment-specific and common nucleotide sequences in the noncoding regions of influenza B virus genome RNAs. Proceedings of the National Academy of Sciences, USA 84, 2703-2707 .[CrossRef]
    [Google Scholar]
  23. Tiley, L. S. , Hagen, M. , Matthews, J. T. & Krystal, M. ( 1994; ). Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5′ ends of the viral RNAs. Journal of Virology 68, 5108-5116 .
    [Google Scholar]
  24. Valegard, K. , Murray, J. B. , Stockley, P. G. , Stonehouse, N. J. & Liljas, L. ( 1994; ). Crystal structure of an RNA bacteriophage coat protein–operator complex. Nature 371, 623-626.[CrossRef]
    [Google Scholar]
  25. Wyatt, J. R. & Tinoco, I.Jr ( 1993; ). RNA structural elements and RNA function. In The RNA World, pp. 465-496. Edited by R. F. Gesteland & J. F. Atkins. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Yamanaka, K. , Ogasawara, N. , Yoshikawa, H. , Ishihama, A. & Nagata, K. ( 1991; ). In vivo analysis of the promoter structure of the influenza virus RNA genome using a transfection system with an engineered RNA. Proceedings of the National Academy of Sciences, USA 88, 5369-5373 .[CrossRef]
    [Google Scholar]
  27. Zhou, Y. , König, M. , Hobom, G. & Neumeier, E. ( 1998; ). Membrane-anchored incorporation of a foreign protein in recombinant influenza virions. Virology 246, 83-94.[CrossRef]
    [Google Scholar]
  28. Zobel, A. , Neumann, G. & Hobom, G. ( 1993; ). RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Research 21, 3607-3614 .[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-10-2565
Loading
/content/journal/jgv/10.1099/0022-1317-80-10-2565
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error