Transmission of zucchini yellow mosaic virus (ZYMV) by aphids was examined by introducing mutations within the highly conserved proline-threonine-lysine (PTK) motif of the helper component proteinase (HC-Pro) using a cDNA full-length clone. Replacement of proline by alanine (ATK) in the PTK motif abolished transmission almost completely both from plants and from membranes. Substitution of the basic lysine by glutamic acid (PTE) did not reduce the rate of transmission compared with the wild-type. Replacement of threonine by valine (PVK) or serine (PSK) resulted in a rate of transmission that was lower than that of the wild-type. The rate was lower for PSK than for PVK. Western blot comparison did not permit attribution of HC-Pro functionality in transmission to its level in the host. The HC-Pro of strains that effected transmission (with the wild-type PTK motif, and with the mutated PTE and PVK motifs) could also bind in vitro to virions of ZYMV. HC-Pro with a PSK motif, which was less effective in assisting transmission, could bind only weakly to virions, while HC-Pro of the almost non-transmissible strains (with PAK and ATK motifs) did not bind at all. Interestingly, positive binding was recorded for transmission-defective ZYMV-Ct, which has a PTK motif but has glutamic acid instead of lysine in the lysine-leucine-serine-cysteine (KLSC) motif. These findings support the 'bridge hypothesis', and confirm the binding of the HC-Pro to the virion. The possible role of the PTK and KLSC motifs in binding to the virus and to the mouthparts of the aphid is discussed.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error