1887

Abstract

Antigenic sites in the cucumber mosaic virus (CMV) coat protein (CP) have been identified using a polyclonal antiserum prepared against glutaral- dehyde-fixed virions. Antibodies were used to screen a random peptide library of heptamers displayed on the surface of a bacteriophage. Eight of 36 (22%) sequenced phage clones had inserts resembling a putative virion surface domain of the CMV CP. This region has the sequence LETDEL, corresponding to amino acids 194–199 in the Fny- CMV CP. The binding of phage clones to Fny-CMV antiserum was inhibited by a synthetic peptide representing this region. Six of 36 (17%) phage clones contained sequences corresponding to a C- terminal sequence in the Fny-CMV CP, which is thought to be internal in assembled virions. This sequence, EHQRIPTSGV, represents amino acids 206–215 and all but the P residue were observed in at least one clone. Four of 36 (11%) sequenced phage clones carried sequences that matched a portion of the sequence RLLLPDSV, corresponding to amino acids 89–96 in the Fny-CMV CP. This region was also identified as the antigenic site recognized by a monoclonal antibody (MAb23C10E4). Eleven percent of the phage (4 of 36) contained sequences matching at least three amino acids of the N-terminal region in the CMV CP. The positions of the antigenic sites seen in this study are consistent with a predicted structure for the CMV CP.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-12-3145
1998-12-01
2022-10-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/12/9880034.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-12-3145&mimeType=html&fmt=ahah

References

  1. Al Moudallal Z., Briand J. P., Van Regenmortel M. H. V. 1982; Monoclonal antibodies as probes of the antigenic structure of tobacco mosaic virus. EMBO Journal 1:1005–1010
    [Google Scholar]
  2. Al Moudallal Z., Briand J. P, Van Regenmortel M. H. V. 1985; A major part of the polypeptide chain of tobacco mosaic virus protein is antigenic. EMBO Journal 4:1231–1235
    [Google Scholar]
  3. Andreeva L., Jarvekulg L., Rabenstein F., Torrance L., Harrison B. D., Saarma M. 1994; Antigenic analysis of potato virus-A particles and coat protein. Annals of Applied Biology 125:337–348
    [Google Scholar]
  4. Barlow D. J., Edwards M. S., Thornton J. M. 1986; Continuous and discontinuous protein antigenic determinants. Nature 322:747–748
    [Google Scholar]
  5. Benjamin D. C., Berzofsky J. A., East I. J., Gurd F. R., Hannum C., Leach S. J., Margoliash E., Michael J. G., Miller A., Prager E. M., Reichlin M., Sercarz E. E., Smith-Gill S. J., Todd P. E., Wilson A. C. 1984; The antigenic structure of proteins: a reappraisal. Annual Review of Immunology 2:67–101
    [Google Scholar]
  6. Bottger V., Stasiak P. C., Harrison D. L., Mellerick D. M., Lane E. B. 1995; Epitope mapping of monclonal antibodies to keratin-19 using keratin fragments, synthetic peptides and phage peptide libraries. European Journal of Biochemistry 231:475–485
    [Google Scholar]
  7. Chen B., Francki R. I. B. 1990; Cucumovirus transmission by the aphidMyzus persicaeis determined solely by the viral coat protein. Journal of General Virology 71:939–944
    [Google Scholar]
  8. Chen J. P., Torrance L., Cowan G. H., MacFarlane S. A., Stubbs G., Wilson T. M. A. 1997; Monoclonal antibodies detect a single amino acid difference between the coat proteins of soilborne wheat mosaic virus isolates: implications for virus structure. Phytopathology 87:295–301
    [Google Scholar]
  9. Commandeur U., Koenig R., Manteuffel R., Torrance L., Luddecke P., Frank R. 1994; Location, size, and complexity of epitopes on the coat protein of beet necrotic yellow vein virus studied by means of synthetic overlapping peptides. Virology 198:282–287
    [Google Scholar]
  10. Desbiez C., Gal-On A., Raccah B., Lecoq H. 1997; Characterization of epitopes on zucchini yellow mosaic potyvirus coat protein permits studies on the interactions between strains. Journal of General Virology 78:2073–2076
    [Google Scholar]
  11. Devergne J. C., Cardin L. 1973; Contribution a l’étude du virus de la mosaique du concombre (CMV). IV. Essai de classification de plusieurs isolats sur la base de leur structure antigenique. Annales de Phytopathologie 5:409–430
    [Google Scholar]
  12. Dore I., Altschuh D., Al Moudallal Z., Van Regenmortel M. H. V. 1987; Immunochemical studies of tobacco mosaic virus. VII. Use of comparative surface accessibility of residues in antigenically related viruses for delineating epitopes recognized by monoclonal antibodies. Molecular Immunology 24:1351–1358
    [Google Scholar]
  13. Dore I., Weiss E., Altschuh D., Van Regenmortel M. H. V. 1988; Visualization by electron microscopy of the location of tobacco mosaic virus epitopes reacting with monoclonal antibodies in enzyme immunoassay. Virology 162:279–289
    [Google Scholar]
  14. Dore I., Ruhlmann C., Oudet P., Cahoon M., Caspar D. L. D., Van Regenmortel M. H. V. 1990; Polarity of binding of monoclonal antibodies to tobacco mosaic virus rods and stacked disks. Virology 176:25–29
    [Google Scholar]
  15. Felici F., Castagnoli L., Muscacchio A., Jappelli R., Cesareni G. 1991; Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. Journal of Molecular Biology 222:301–310
    [Google Scholar]
  16. Folgori A., Tafi R., Meola A., Felici F., Galfre G., Cortese R., Monaci P., Nicosia A. 1994; A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO Journal 13:2236–2243
    [Google Scholar]
  17. Francki R. I. B., Habili N. 1972; Stabilization of capsid structure and enhancement of immunogenicity of cucumber mosaic virus (Q strain) by formaldehyde. Virology 48:309–315
    [Google Scholar]
  18. Francki R. I. B., Gould A. R., Hatta T. 1980; Variation in the pathogenicity of three viruses of tomato. Annals of Applied Biology 96:219–226
    [Google Scholar]
  19. Gera A., Loebenstein G., Raccah B. 1979; Protein coats of two strains of cucumber mosaic virus affect transmission byAphis gossypii . Phytopathology 69:396–399
    [Google Scholar]
  20. Germaschewski V., Murray K. 1996; Identification of polyclonal serum specificities with phage-display libraries. Journal of Virological Methods 58:21–32
    [Google Scholar]
  21. Geyson H. M., Rodda S. J., Mason T. J. 1986; A prioridelineation of a peptide which mimics a discontinuous antigenic determinant. Molecular Immunology 23:709–715
    [Google Scholar]
  22. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual pp Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Harrison B. D., Robinson D. J. 1988; Molecular variation in vector- borne plant viruses : epidemiological significance. Philosophical Transactions of the Royal Society of London B Biological Sciences 321:447–462
    [Google Scholar]
  24. Jaegle M., Briand J. P., Burckard J., VanRegenmortel M. H. V. 1988; Accessibility of three continuous epitopes in tomato bushy stunt virus. Annales de l Institut Pasteur Virologie 139:39–50
    [Google Scholar]
  25. Joisson C., Kuster F., Plaue S., Van Regenmortel M. H. 1993; Antigenic analysis of bean pod mottle virus using linear and cyclized synthetic peptides. Archives of Virology 128:299–317
    [Google Scholar]
  26. Jolly C. A., Mayo M. A. 1994; Chang es in the amino acid sequence of the coat protein readthrough domain of potato leafroll luteovirus affect the formation of an epitope and aphid transmission. Virology 201:182–185
    [Google Scholar]
  27. Jordan R. 1992; Potyviruses, monoclonal antibodies, and antigenic sites. Archives of Virology Suppl. 5 81–95
    [Google Scholar]
  28. Kantrong S., Saunal H., Briand J. P., Sako N. 1995; A single amino acid substitution at N-terminal region of coat protein of turnip mosaic virus alters antigenicity and aphid transmissibility. Archives of Virology 140:453–467
    [Google Scholar]
  29. Karasawa A., Nakaho K., Kakutani T., Minobe Y., Ehara Y. 1991; Nucleotide sequence of RNA 3 of peanut stunt virus. Virology 185:464–467
    [Google Scholar]
  30. Kay B. K., Adey N. B., He Y. S., Manfredi J. P., Mataragnon A. H., Fowlkes D. M. 1993; An M-13-phage library displaying random 38- amino acid peptides as a source of novel sequences with affinity to selected targets. Gene 128:59–65
    [Google Scholar]
  31. Koenig R., Torrance L. 1986; Antigenic analysis of potato virus X by means of monoclonal antibodies. Journal of General Virology 67:2145–2151
    [Google Scholar]
  32. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  33. Lane D. P., Stephen C. W. 1997; Epitope mapping using bacteriophage peptide libraries. Current Opinion in Immunology 5:268–271
    [Google Scholar]
  34. Legorburu F. J., Robinson D. J., Torrance L., Duncan G. H. 1995; Antigenic analysis of nematode-transmissible and non-transmissible isolates of tobacco rattle tobravirus using monoclonal antibodies. Journal of General Virology 76:1497–1501
    [Google Scholar]
  35. Legorburu F. J., Robinson D. J., Torrance L. 1996; Features on the surface of the tobacco rattle tobravirus particle that are antigenic and sensitive to proteolytic digestion. JournalofGeneral Virology 77:855–859
    [Google Scholar]
  36. Lot H., Marrou J., Quiot J. B., Esvan C. 1972; Contribution a l etude de virus de la mosaique du concombre (CMV). II. Methode de purification rapide du virus. Annales de Phytopathologie 4:25–38
    [Google Scholar]
  37. McCullough K. C., Crowther J. R., Butcher R. N. 1985; Alteration in antibody reactivity with foot-and-mouth disease virus (FMDV) 146S antigen before and after binding to a solid phase or complexing with specific antibody. Journal of Immunological Methods 82:91–100
    [Google Scholar]
  38. Mackenzie D. J., Tremaine J. H. 1986; The use of a monoclonal antibody specific for the N-terminal region of Southern bean mosaic virus as a probe of virus structure. Journal of General Virology 67:727–735
    [Google Scholar]
  39. Massalski P. R., Harrison B. D. 1987; Properties of monoclonal antibodies to potato leafroll luteovirus and their use to distinguish virus isolates differing in aphid transmissibility. Journal of General Virology 68:1813–1821
    [Google Scholar]
  40. O’Reilly D., Thomas C. J. R., Coutts R. H. A. 1991; Tomato aspermy virus has an evolutionary relationship with other tripartite RNA plant viruses. Journal of General Virology 72:1–7
    [Google Scholar]
  41. Palukaitis P., Roossinck M. J., Dietzgen R. G., Francki R. I. B. 1992; Cucumber mosaic virus. Journal of General Virology 41:281–348
    [Google Scholar]
  42. Pappu H. R., Pappu S. S., Manjunath K. L., Lee R. F., Niblett C. L. 1993; Molecular characterization of a structural epitope that is largely conserved among severe isolates of a plant virus. Proceedings of the National Academy of Sciences, USA 90:3671–3644
    [Google Scholar]
  43. Parmley S. F., Smith G. P. 1988; Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318
    [Google Scholar]
  44. Pereira L. G., Torrance L., Roberts I. M., Harrison B. D. 1994; Antigenic structure of the coat protein of potato mop-top furovirus. Virology 203:277–285
    [Google Scholar]
  45. Perry K. L., Francki R. I. B. 1992; Insect-mediated transmission of mixed and reassorted cucumovirus genomic RNAs. Journal of General Virology 73:2105–2114
    [Google Scholar]
  46. Perry K. L., Zhang L., Shintaku M. H., Palukaitis P. 1994; Mapping determinants in cucumber mosaic virus for transmission byAphis gossypii. Virology 205:591–595
    [Google Scholar]
  47. Perry K. L., Zhang L., Palukaitis P. 1998; Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphidsMyzus persicaeandAphis gossypii . Virology 242:204–210
    [Google Scholar]
  48. Porta C., Devergne J. C., Cardin L., Briand J. P., VanRegenmortel M. H. V. 1989; Serotype specificity of monoclonal antibodies to cucumber mosaic virus. Archives of Virology 104:271–285
    [Google Scholar]
  49. Rizzo T. M., Gray S. M. 1992; Localization of a surface domain of the capsid protein of barley yellow dwarf virus. Virology 186:300–302
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Shintaku M., Palukaitis P. 1990; Genetic mapping of cucumber mosaic virus. In Viral Genes and Plant Pathogenesis pp 156–164 Pirone T. P., Shaw J. G. Edited by New York: Springer-Verlag;
    [Google Scholar]
  52. Shukla D. D., Strike P. M., Tracy S. L., Gough K. H., Ward C. W. 1988; The N and C termini of the coat proteins of potyviruses are surface-located and the N terminus contains the major virus-specific epitopes. Journal of General Virology 69:1497–1508
    [Google Scholar]
  53. Smith G. P., Petrenko V. A. 1991; Phage display. Chemical Reviews 97:391–410
    [Google Scholar]
  54. Smith G. P., Scott J. K. 1993; Libraries of peptides and proteins displayed on filamentous phage. Methods in Enzymology 217:228–257
    [Google Scholar]
  55. Smith A. D., Wilson J. E. 1993; A modified ELISA that selectively detects monoclonal antibodies recognizing native antigen. Journal of Immunological Methods 94:31–35
    [Google Scholar]
  56. Speir J. A., Munshi S., Wang G., Baker T. S., Johnson J. E. 1995; Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78
    [Google Scholar]
  57. Stephen C. W., Helminen P., Lane D. 1995; Characterization of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions. Journal of Molecular Biology 248:58–78
    [Google Scholar]
  58. Tafi R., Bandi R., Prezzi C., Mondelli M. U., Cortese R., Monaci P., Nicosia A. 1997; Identification of HCV core mimotopes: improved methods for the selection and use of disease-related phage-displayed peptides. Biological Chemistry 378:495–502
    [Google Scholar]
  59. Torrance L. 1992; Analysis of epitopes on potato leafroll virus capsid protein. Virology 191:485–489
    [Google Scholar]
  60. Torrance L., Cowan G. H., Pereira L. G. 1993; Monoclonal antibodies specific for potato mop-top virus, and some properties of the coat protein. Annals of Applied Biology 122:311–322
    [Google Scholar]
  61. Trifilieff E., Dubs M. C., VanRegenmortel M. H. V. 1991; Antigenic cross-reactivity potential of synthetic peptides immobilized on polyethylene rods. Molecular Immunology 28:889–896
    [Google Scholar]
  62. vandenHeuvel J. F. J. M., deBlank C. M., Goldbach R. W., Peters D. 1990; A characterization of epitopes on potato leafroll virus coat protein. Archives of Virology 115:185–197
    [Google Scholar]
  63. vandenHeuvel J. F. J. M., Verbeek M., Peters D. 1993; The relationship between aphid-transmissibility of potato leafroll virus and surface epitopes of the viral capsid. Phytopathology 83:1125–1129
    [Google Scholar]
  64. Van Regenmortel M. H. V. 1986; Tobacco mosaic virus : antigenic structure. In The Plant Viruses . The Rod-Shaped Plant Viruses pp 79–104 Van Regenmortel M. H. V., Fraenkel-Conrat H. Edited by New York: Plenum Press;
    [Google Scholar]
  65. Van Regenmortel M. H. V. 1992; The conformational specificity of viral epitopes. FEMS Microbiology Letters 100:483–488
    [Google Scholar]
  66. Vuento M., Paananen K., Vihinen-Ranta M., Kurppa A. 1993; Characterization of antigenic epitopes of potato virus Y. Biochimica et Biophysica Acta 1162:155–160
    [Google Scholar]
  67. Wahyuni W. S., Dietzgen R. G., Hanada K., Francki R. I. B. 1991; Serological and biological variation between and within subgroup I and II strains of cucumber mosaic virus. Plant Pathology 41:282–297
    [Google Scholar]
  68. Westhof E., Altschuh D., Moras D., Bloomer A. C., Mondragon A., Klug A., Van Regenmortel M. H. V. 1984; Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311:123–126
    [Google Scholar]
  69. Wikoff W. R., Tsai C. J., Wang G., Baker T. S., Johnson J. E. 1997; The structure of cucumber mosaic virus - cryoelectron microscopy, X-ray crystallography and sequence analysis. Virology 232:91–97
    [Google Scholar]
  70. Yao Z., Kao M. C. C., Chung M. C. M. 1995a; Epitope identification by polyclonal antibody from phage-displayed random peptide library. Journal of Protein Chemistry 14:161–166
    [Google Scholar]
  71. Yao Z., Kao M. C. C., Loh K. L., Chung M. C. M. 1995b; A serotype-specific epitope of dengue virus 1 identified by phage displayed random peptide library. FEMS Microbiology Letters 127:93–98
    [Google Scholar]
  72. Yao X., Chan M., Kao M. C. C., Chung M. C. M. 1996; Linear epitopes of sperm whale myoglobin identified by polyclonal antibody screening of random peptide library. International Journal of Peptide Protein Research 48:477–485
    [Google Scholar]
  73. Yao Z. J., Ong L. H., Chan L., Chung M. C. M. 1998; Identifying antigenic region of hepatitis B surface antigen by patient’s serum with random peptide library. Protein and Peptide Letters 5:33–40
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-12-3145
Loading
/content/journal/jgv/10.1099/0022-1317-79-12-3145
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error