1887

Abstract

The herpes simplex virus type 2 (HSV-2) US2 gene product was identified by using a rabbit polyclonal antiserum raised against a recombinant 6 × His-US2 fusion protein expressed in The antiserum reacted specifically with a 39 kDa protein in HSV-2 strain 186-infected cell lysates. The protein was not detectable in the presence of the virus DNA synthesis inhibitor phosphonoacetic acid. Indirect immunofluorescence studies localized the US2 protein in the cytoplasm and as discrete granules at late times post-infection within and at the periphery of the nucleus, and nuclear fractionation studies showed that the protein was partially associated with the nuclear matrix of infected cells. The protein was easily detected in purified virions. Also, a US2 insertion mutant was constructed which contained an ICP6-lacZ insertion in the US2 gene. This mutant was as virulent as wild-type virus in mice when inoculated by the footpad route. The importance of the US2 protein of HSV-2 in the virus life-cycle may be apparent only in the natural human host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-11-2777
1998-11-01
2022-10-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/11/9820154.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-11-2777&mimeType=html&fmt=ahah

References

  1. Ben-Ze’ev A., Abulafia R., Bratosin S. 1983; Herpes simplex virus and protein transport are associated with the cytoskeletal framework and the nuclear matrix in infected BSC-1 cells. Virology 129:501–507
    [Google Scholar]
  2. Berezney R. 1991; The nuclear matrix: a heuristic model for investigating genomic organization and function in the cell nucleus. Journal of Cellular Biochemistry 47:109–123
    [Google Scholar]
  3. Blaho J. A., Mitchell C., Roizman B. 1994; An amino acid sequence shared by the herpes simplex virus 1 α regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products. Journal of Biological Chemistry 269:17401–17410
    [Google Scholar]
  4. Breeden C. A., Yalamanchili R. R., Colle C. F., O’Callaghan D. J. 1992; Identification and transcriptional mapping of genes encoded at the IR/Us junction of equine herpesvirus type 1. Virology 191:649–660
    [Google Scholar]
  5. Bronstein J. C., Weller S. K., Weber P. C. 1997; The product of the UL12.5 gene of herpes simplex virus type 1 is a capsid-associated nuclease. Journal of Virology 71:3039–3047
    [Google Scholar]
  6. Brunovskis P., Velicer L. F. 1995; The Marek’s disease virus (MDV) unique short region: alphaherpesvirus-homologous, fowlpox virus-homologous, and MDV-specific genes. Virology 206:324–338
    [Google Scholar]
  7. Cantello J. L., Anderson A. S., Francesconi A., Morgan R. W. 1991; Isolation of a Marek’s disease virus (MDV) recombinant containing the lacZ gene of Escherichia coli stably inserted within the MDV US2 gene. Journal of Virology 65:1584–1588
    [Google Scholar]
  8. Capco D. G., Wan K. M., Penman S. 1982; The nuclear matrix: three-dimensional architecture and protein composition. Cell 29:847–858
    [Google Scholar]
  9. Chang Y. E., Roizman B. 1993; The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. Journal of Virology 67:6348–6356
    [Google Scholar]
  10. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  11. Dolan A., Jamieson F. E., Cunningham C., Barnett B. C., McGeoch D. J. 1998; The genome sequence of herpes simplex virus type 2. Journal of Virology 72:2010–2021
    [Google Scholar]
  12. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Leung-Tack P., Audonnet J.-C., Riviere M. 1994; The complete DNA sequence and the genetic organization of the short unique region (Us) of the bovine herpesvirus type 1 (ST strain). Virology 199:409–421
    [Google Scholar]
  14. Longnecker R., Roizman B. 1987; Clustering of genes dispensable for growth in culture in the S component of the HSV-1 genome. Science 236:573–576
    [Google Scholar]
  15. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex viruses type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  16. McGeoch D. J., Moss H. W. M., McNab D., Frame M. C. 1987; DNA sequence and genetic content of the HindIII l region in the short unique component of the herpes simplex virus type 2 genome : identification of the gene encoding glycoprotein G, and evolutionary comparisons. Journal of General Virology 68:19–38
    [Google Scholar]
  17. Nagesha H. S., Crabb B. S., Studdert M. J. 1993; Analysis of the nucleotide sequence of five genes at the left end of the unique short region of the equine herpesvirus 4 genome. Archives of Virology 128:143–154
    [Google Scholar]
  18. Nalwanga D., Rempel S., Roizman B., Baines J. D. 1996; The UL16 gene product of herpes simplex viruses 1 is a virion protein that colocalizes with intranuclear capsid proteins. Virology 226:236–242
    [Google Scholar]
  19. Nicholson P., Addison C., Cross A. M., Kennard J., Preston V. G., Rixon F. J. 1994; Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a. Journal of General Virology 75:1091–1099
    [Google Scholar]
  20. Nishiyama Y., Yamada Y., Kurachi R., Daikoku T. 1992; Construction of a US3 lacZ insertion mutant of herpes simplex virus type 2 and characterization of its phenotype in vitro and in vivo . Virology 190:256–268
    [Google Scholar]
  21. Parcells M. S., Anderson A. S., Cantello J. L., Morgan R. W. 1994; Characterization of Marek’s disease virus insertion and deletion mutants that lack US1 (ICP22 homolog), US10, and/or US2 and neighboring short-component open reading frames. Journal of Virology 68:8239–8253
    [Google Scholar]
  22. Parcells M. S., Anderson A. S., Morgan R. W. 1995; Retention of oncogenicity by a Marek’s disease virus mutant lacking six unique short region genes. Journal of Virology 69:7888–7898
    [Google Scholar]
  23. Patel A. H., Maclean J. B. 1995; The product of the UL6 gene of herpes simplex virus type 1 is associated with virus capsids. Virology 206:465–478
    [Google Scholar]
  24. Phelan A., Dunlop J., Patel A. H., Stow N. D., Clements J. B. 1997; Nuclear sites of herpes simplex virus type 1 DNA replication and transcription colocalize at early times postinfection and are largely distinct from RNA processing factors. Journal of Virology 71:1124–1132
    [Google Scholar]
  25. Pinard M.-F., Simard R., Bibor-Hardy V. 1987; DNA-binding proteins of herpes simplex virus type 1-infected BHK cell nuclear matrices. Journal of General Virology 68:727–735
    [Google Scholar]
  26. Quinlan M. P., Knipe D. M. 1983; Nuclear localization of herpesvirus proteins : potential role for the cellular framework. Molecular and Cellular Biology 3:315–324
    [Google Scholar]
  27. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent end points. American Journal of Hygiene 27:493–497
    [Google Scholar]
  28. Roizman B., Sears A. E. 1996; Herpes simplex viruses and their replication. In Fields Virology, 3rd edn. pp. 2231–2295 Fields B. N., Knipe D. M., Howley P. M. Edited by Philadelphia: Lippincott-Raven;
    [Google Scholar]
  29. Roizman B., Desrosiers R. C., Fleckenstein B., Lopez C., Minson A. C., Studdert M. J. 1992; The family Herpesviridae : an update. Archives of Virology 123:425–449
    [Google Scholar]
  30. Ross L. J. N., Binns M. M., Pastorek J. 1991; DNA sequence and organization of genes in a 5·5 kbp EcoRI fragment mapping in the short unique segment of Marek’s disease virus (strain RB1B). Journal of General Virology 72:949–954
    [Google Scholar]
  31. Sakaguchi M., Urakawa T., Hirayama Y., Miki N., Yamamoto M., Hirai K. 1992; Sequence determination and genetic content of an 8·9kb restriction fragment in the short unique region and the internal inverted repeat of Marek’s disease virus type 1 DNA. Virus Genes 6:365–378
    [Google Scholar]
  32. Schroder C. H., Kümel G. 1986; Virulent and avirulent HSV-1: pathogenesis and molecular biology. In Human Herpesvirus Infection pp. 13–23 Lopez C., Roizman B. Edited by New York: Raven Press;
    [Google Scholar]
  33. Szilagyi J. F., Cunningham C. 1991; Identification and characterization of a novel non-infectious herpes simplex virus-related particle. Journal of General Virology 72:661–668
    [Google Scholar]
  34. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets : procedure and some applications. Proceedings of the National Academy of Sciences, USA 76:4350–4354
    [Google Scholar]
  36. Tsurumi T., Maeno K., Nishiyama Y. 1986; Molecular cloning of herpes simplex virus type 2 DNA. Journal of Biochemistry 99:981–984
    [Google Scholar]
  37. Tsutsui Y., Nishiyama Y., Yoshida S., Maeno K., Hoshino M. 1983; Role of the nuclear matrix in the growth of herpes simplex virus type 2. Archives of Virology 77:27–38
    [Google Scholar]
  38. van Zijl M., van der Gulden H., de Wind N., Gielkens A., Berns A. 1990; Identification of two genes in the unique short region of pseudorabies virus; comparison with herpes simplex virus and varicella-zoster virus. Journal of General Virology 71:1747–1755
    [Google Scholar]
  39. Ward P. L., Barker D. E., Roizman B. 1996a; A novel herpes simplex virus 1 gene, UL43.5, maps antisense to the UL43 gene and encodes a protein which colocalizes in nuclear structures with capsid proteins. Journal of Virology 70:2684–2690
    [Google Scholar]
  40. Ward P. L., Ogle W. O., Roizman B. 1996b; Assemblons : nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1. Journal of Virology 70:4623–4631
    [Google Scholar]
  41. Weber P. C., Levine M., Glorioso J. C. 1987; Rapid identification of nonessential genes of herpes simplex virus type 1 by Tn5 mutagenesis. Science 236:576–579
    [Google Scholar]
  42. Wild M. A., Cook S., Cochran M. 1996; A genomic map of infectious laryngotracheitis virus and the sequence and organization of genes present in the unique short and flanking regions. Virus Genes 12:107–116
    [Google Scholar]
  43. Yamada H., Daikoku T., Yamashita Y., Jiang Y.-M., Tsurumi T., Nishiyama Y. 1997; The product of the US10 gene of herpes simplex virus type 1 is a capsid/tegument-associated phosphoprotein which copurifies with the nuclear matrix. Journal of General Virology 78:2923–2931
    [Google Scholar]
  44. Yamada H., Jiang Y.-M., Oshima S.-i., Daikoku T., Yamashita Y., Tsurumi T., Nishiyama Y. 1998; Characterization of the UL55 gene product of herpes simplex virus type 2. Journal of General Virology 79:1989–1995
    [Google Scholar]
  45. Yamauchi M., Nishiyama Y., Fujioka H., Isomura S., Maeno K. 1985; On the intracellular transport and the nuclear association of human cytomegalovirus structural proteins. Journal of General Virology 66:675–684
    [Google Scholar]
  46. Zelník V., Darteil R., Audonnet J. C., Smith G. D., Riviere M., Pastorek J., Ross L. J. N. 1993; The complete sequence and gene organization of the short unique region of herpesvirus of turkeys. Journal of General Virology 74:2151–2162
    [Google Scholar]
  47. Zelník V., Ross N. L. J., Pastorek J. 1994; Characterization of proteins encoded by the short unique region of herpesvirus ofturkeys by in vitro expression. Journal of General Virology 75:2747–2753
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-11-2777
Loading
/content/journal/jgv/10.1099/0022-1317-79-11-2777
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error