The three flavivirus glycoproteins prM, E and NS1 are formed by post-translational cleavage and are glycosylated by the addition of N-linked glycans. NS1 may form homodimers, whereas E may form homodimers, homotrimers or heterodimers (prM-E). Modification of these processes by mutagenesis of the proteins has the potential to generate viruses that are restricted in growth and are possible vaccine candidates. Using an SV40-based expression system, we previously analysed dimerization and secretion of the NS1 protein of dengue virus type 2 (DEN-2) with mutations in the conserved Cys residues, or within hydrophilic or hydrophobic regions, or at glycosylation sites. In this study, mutations which reduce cleavage at the DEN-2 prM/E signalase cleavage site are described. On the basis of earlier and current results with transient expression, six mutations which reduced NS1 dimerization and two mutations which inhibited prM/E cleavage were analysed individually for their effects on virus growth using a genomic length cDNA clone. Two viruses were obtained that showed reduced growth in cell culture and attenuation of neurovirulence when inoculated into 3-day-old mice. One of these viruses encoded NS1 that lacked the second glycosylation site, the other encoded a Ser --> Ile change at the -3 position of the prM/E cleavage site. A third virus encoding a mutation in NS1 within a hydrophilic region grew as well as the parental virus. No virus was detected for the remaining five mutations.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error