1887

Abstract

H-2d mice are resistant to measles virus-induced encephalitis (MVE) and develop L-restricted CD8 T cells which lyse target cells infected with measles virus or with a vaccinia virus recombinant expressing the nucleocapsid protein of measles virus (vvN). In contrast, H-2k mice are susceptible to MVE and generate CD8 T cells which lyse target cells infected with vvN, but not those infected with MV. We were able to demonstrate that this difference is not due to a defect in the antigen processing machinery, but that K molecules require 100-fold more peptide to sensitize target cells for lysis by CTL. vvN replicates well in target cells and therefore enhances the level of epitope peptide available for CTL recognition. In contrast, MV infection is abortive in mouse cells and low levels of epitope peptide are produced. As L requires 100-fold less peptide than K to sensitize target cells for lysis, the low level of epitope peptide is enough to induce lysis by CD8 T cells, whereas for recognition via K, increased synthesis of protein is required. We propose that the differences in peptide binding between the two H-2 molecules will have consequences for the kinetics of the generation of CD8 T cells as well as the absolute numbers of CD8 T cells generated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-11-2583
1998-11-01
2022-05-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/11/9820133.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-11-2583&mimeType=html&fmt=ahah

References

  1. Ahn K., Angulo A., Ghazal P., Peterson P. A., Yang Y., Fruh K. 1996; Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proceedings of the National Academy of Sciences, USA 93:10990–10995
    [Google Scholar]
  2. Antón L. C., Yewdell J. W., Bennink J. R. 1997; MHC class I- associated peptides produced from endogenous gene products with vastly different efficiencies. Journal of Immunology 158:2535–2542
    [Google Scholar]
  3. Bankamp B., Brinckmann U. G., Reich A., Niewiesk S., ter Meulen V., Liebert U. G. 1991; Measles virus nucleocapsid protein protects rats from encephalitis. Journal of Virology 65:1695–1700
    [Google Scholar]
  4. Beauverger P., Buckland R., Wild F. T. 1993; Measles virus antigens induce both type-specific and canine distemper virus crossreactive cytotoxic T lymphocytes in mice: localization of a common Ld- restricted nucleoprotein epitope. Journal of General Virology 74:2357–2363
    [Google Scholar]
  5. Beauverger P., Chadwick J., Buckland R., Wild T. F. 1994; Serotype-specific and canine distemper virus cross-reactive H-2Kk- restricted cytotoxic T lymphocyte epitopes in the measles virus nucleoprotein. Virology 203:172–177
    [Google Scholar]
  6. Brown E. L., Wooters J. L., Frerenz C. R., O’Brien C. M., Hewick R. M., Herrmann S. H. 1994; Characterization of peptide binding to the murine MHC class I H-2Kk molecule. Journal of Immunology 153:3079–3092
    [Google Scholar]
  7. Bruton O. C. 1953; Agammaglobulinemia. Pediatrics 9:722–728
    [Google Scholar]
  8. Cao W., Myers-Powell B. A., Braciale T. J. 1996; The weak CD8+ CTL response to an influenza hemagglutinin epitope reflects limited T cell availability. Journal of Immunology 157:505–511
    [Google Scholar]
  9. Del Val M., Schlicht H.-J., Ruppert T., Reddehase M. J., Koszinowski U. H. 1991; Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 66:1145–1153
    [Google Scholar]
  10. Del Val M., Hengel H., Häcker H., Hartlaub U., Ruppert T., Lucin P., Koszinowski U. 1992; Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histo-compatibility complex I molecules into the medial-Golgi. Journal of Experimental Medicine 176:729–738
    [Google Scholar]
  11. Elliott T., Willis A., Cerundolo V., Townsend A. 1995; Processing of major histocompatibility class I-restricted antigens in the endoplasmic reticulum. Journal of Experimental Medicine 181:1481–1491
    [Google Scholar]
  12. Feltkamp M. C. W., Vierboom M. P. M., Toes R. E. M., Ossendorp F., ter Schegget J., Melief C. J. M., Kast W. M. 1995; Competition inhibition of cytotoxic T-lymphocyte (CTL) lysis, a more sensitive method to identify candidate CTL epitopes than induction of antibody- detected MHC class I stabilization. Immunology Letters 47:1–8
    [Google Scholar]
  13. Fennelly G. J., Flynn J. A. L., ter Meulen V., Liebert U. G., Bloom B. R. 1995; Recombinant Bacille Calmette Guerin priming against measles. Journal of Infectious Diseases 172:698–705
    [Google Scholar]
  14. Finke D., Liebert U. G. 1994; CD4+ T cells are essential in overcoming experimental murine measles encephalitis. Immunology 83:184–189
    [Google Scholar]
  15. Good R. A., Zak S. J. 1956; Disturbances in gamma globulin synthesis as ‘experiments of nature’. Pediatrics 18:109–149
    [Google Scholar]
  16. Hengel H., Lucin P., Jonjic S., Ruppert T., Koszinowski U. H. 1994; Restoration of cytomegalovirus antigen presentation by gamma interferon combats viral escape. Journal of Virology 68:289–297
    [Google Scholar]
  17. Hill A., Jugovic P., York I., Russ G., Bennink J., Yewdell J., Ploegh H., Johnson D. 1995; Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415
    [Google Scholar]
  18. Horvat B., Rivailler P., Varior-Krishnan G., Cardoso A., Gerlier D., Rabourdin-Combe C. 1996; Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infection. Journal of Virology 70:6673–6681
    [Google Scholar]
  19. Jeffries W. A., Burgert H.-G. 1990; E3/ 19K from adenovirus 2 is an immunosubversive protein that binds to a structural motif regulating the intracellular transport of major histocompatibility complex class I proteins. Journal of Experimental Medicine 172:1653–1664
    [Google Scholar]
  20. Kageyama S., Tsomides T. J., Sykulev Y., Eisen H. N. 1995; Variations in the number of peptide-MHC class I complexes required to activate cytotoxic T cell responses. Journal of Immunology 154:567–576
    [Google Scholar]
  21. Kagi D., Hengartner H. 1996; Different roles for cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses. Current Opinions in Immunology 8:472–477
    [Google Scholar]
  22. Katz M. 1995; Clinical spectrum of measles. In Measles Virus 112 Billeter M., ter Meulen V. Edited by Berlin: Springer;
    [Google Scholar]
  23. Koszinowski U. H., Reddehase M. J., Jonjic S. 1991; The role of CD4 and CD8 T cells in viral infections. Current Opinions in Immunology 3:471–475
    [Google Scholar]
  24. Liebert U. G., Schneider-Schaulies S., Baczko K., ter Meulen V. 1990; Antibody -induced restriction of viral gene expression in measles encephalitis in rats. Journal of Virology 64:706–713
    [Google Scholar]
  25. Long E. O., Jacobson S. 1989; Pathways of viral antigen processing and presentation to CTL: defined by the mode of entry?. Immunology Today 10:45–48
    [Google Scholar]
  26. Nahmias A. J., Griffith D., Salsbury C., Yoshida K. 1967; Thymic aplasia with lymphopenia, plasma cells, and normal immunoglobulins. Journal of the American Medical Association 201:729–734
    [Google Scholar]
  27. Nanan R., Carstens C., Kreth H. W. 1995; Demonstration of virus- specific CD8+ memory T cells in measles-seropositive individuals by in vitro peptide stimulation. Clinical and Experimental Immunology 102:40–45
    [Google Scholar]
  28. Niewiesk S., Brinckmann U., Bankamp B., Sirak S., Liebert U. G., ter Meulen V. 1993; Susceptibility to measles virus-induced encephalitis in mice correlates with impaired antigen presentation to cytotoxic T lymphocytes. Journal of Virology 67:75–81
    [Google Scholar]
  29. Niewiesk S., Schneider-Schaulies J., Ohnimus H., Jassoy C., Schneider-Schaulies S., Diamond L., Logan J. S., ter Meulen V. 1997; CD46 expression does not overcome the intracellular block of measles virus replication in transgenic rats. Journal of Virology 71:7969–7973
    [Google Scholar]
  30. Powis S. J., Deverson E. V., Coadwell J. W., Ciruela A., Huskisson N. S., Smith H., Butcher G. W., Howard J. C. 1992; Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule. Nature 357:211–215
    [Google Scholar]
  31. Reich A., Erlwein O., Niewiesk S., terMeulen V., Liebert U. G. 1992; CD4+ T cells control measles virus infection of the central nervous system. Immunology 76:185–191
    [Google Scholar]
  32. Rotem-Yehudar R., Groettrup M., Soza A., Kloetzel P. M., Ehrlich R. 1996; LMP-associated proteolytic activities and TAP-dependent peptide transport for class I MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12. Journal of Experimental Medicine 183:499–514
    [Google Scholar]
  33. Sibille C., Gould K., Hammerling G., Townsend A. 1992; A defect in the presentation of intracellular viral antigens is restored by interferon- y in cell lines with impaired major histocompatibility complex class I assembly. European Journal of Immunology 22:433–440
    [Google Scholar]
  34. Sijts A. J. A. M., Neisig A., Neefjes J., Pamer E. G. 1996; Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. Journal of Immunology 156:685–692
    [Google Scholar]
  35. Stohlman S. A., Bergmann C. C., Lin M. T., Cua M. T., Hinton D. R. 1998; CTL effector function within the central nervous system requires CD4+ T cells. Journal of Immunology 160:2896–2904
    [Google Scholar]
  36. Uytdehaag F. G., van Binnendijk R. S., Kenter M. J., Osterhaus A. D. 1994; Cytotoxic T lymphocyte responses against measles virus. Current Topics in Microbiology and Immunology 189:151–167
    [Google Scholar]
  37. van Binnendijk R. S., Poelen M. C. M., Kuijpers K. C., Osterhaus A. D. M. E., Uytdehaag F. G. C. M. 1990; The predominance of CD8TcellsafterinfectionwithmeaslesvirussuggestsaroleforCD8class I MHC-restricted cytotoxic T lymphocytes (CTL) in recovery from measles. Journal of Immunology 144:2394–2399
    [Google Scholar]
  38. Weidt G., Utermöhlen O., Heukeshoven J., Lehmann-Grube F., Deppert W. 1998; Relationship among immunodominance of single CD8+ T cell epitopes, virus load, and kinetics of primary antiviral CTL response. Journal of Immunology 160:2923–2931
    [Google Scholar]
  39. Wiertz E. J. H. J., Jones T. R., Sun L., Bogyo M., Geuze H. J., Ploegh H. L. 1996; The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779
    [Google Scholar]
  40. Yewdell J. W., Bennink J. R., Eager K. B., Riccardi R. P. 1988; CTL recognition of adenovirus-transformed cells infected with influenza virus: lysis by anti-influenza CTL parallels adenovirus-12-induced suppression of class I MHC molecules. Virology 162:236–238
    [Google Scholar]
  41. Zimmermann C., Seiler P., Lane P., Zinkernagel R. M. 1997; Antiviral immune responses in CTLA4 transgenic mice. Journal of Virology 71:1802–1807
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-11-2583
Loading
/content/journal/jgv/10.1099/0022-1317-79-11-2583
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error