1887

Abstract

The herpes simplex virus type 1 (HSV-1) latency- associated transcripts (LATs) are the only viral gene products expressed within latently infected neurones. The most abundant (major) LATs consist of twocollinear nuclear polyA RNAsof2 kb and 1·5 kb which it has been suggested represent stable in- trons derived from a less abundant primary transcript (minor LAT). Consistent with this proposition is the identification of consensus splice donor and acceptor sites flanking major LATs which are conserved between HSV types 1 and 2. Here we test the functionality of the predicted splice sites within the context of the virus genome during productive infection and latent infection To this end viruses in which the LAT splicing signals were disrupted by site-directed mutagenesis were con-structed. We report that mutation of the splice acceptor site abrogates 2 kb major LAT generation during productive infection but does not significantly influence major LAT synthesis during neuronal latency. Similarly, mutation of the splice donor site significantly reduces levels of 2 kb major LAT during productive infection but has no detectable effect on the generation of 2 kb major LAT during neuronal latency as assessed by Northern and hybridization analyses of latently infected neuronal tissue. From these data it can be concluded that the proposed splice sites flanking the major LAT region are dispensable for 2 kb major LAT production in neurones latently infected with HSV-1 but constitute functional splicing signals in productively infected non-neuronal cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-1-107
1998-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/1/9460931.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-1-107&mimeType=html&fmt=ahah

References

  1. Arthur J., Efstathiou S., Simmons A. 1993; Intranuclear foci containing low abundance herpes simplex virus latency-associated transcripts visualized by non-isotopic in situ hybridization. Journal of General Virology 74:1363–1370
    [Google Scholar]
  2. Block T. M., Spivack J. G., Steiner I., Deshmane S., McIntosh M. T., Lirette R. P., Fraser N. W. 1990; A herpes simplex virus type 1 latency-associated transcript mutant reactivates with normal kinetics from latent infection. Journal of Virology 64:3417–3426
    [Google Scholar]
  3. Bloom D. C., Hill J. M., Devi-Rao G., Wagner E. K., Feldman L. T., Stevens J. G. 1996; A 348-basepair region in the latency-associated transcript facilitates herpes simplex virus type 1 reactivation. Journal of Virology 70:2449–2459
    [Google Scholar]
  4. Chen X., Schmidt M. C., Goins W. F., Glorosio J. C. 1995; Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. Journal of Virology 69:7899–7909
    [Google Scholar]
  5. Chomczynski P., Sacci N. 1987; Single-step method of RNA isolation by acid guanidiumthiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  6. Devi-Rao G., Goodart S. A., Hecht L. M., Rochford R., Rice M. K., Wagner E. K. 1991; Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency-associated transcripts. Journal of Virology 65:2179–2190
    [Google Scholar]
  7. Dobson A. T., Sederati F., Devi-Rao G., Flanagan W. M., Farrell M. J., Stevens J. G., Wagner E. K., Feldman L. T. 1989; Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. Journal of Virology 63:3844–3851
    [Google Scholar]
  8. Everett R. D. 1989; Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1. Journal of General Virology 70:1185–1202
    [Google Scholar]
  9. Everett R. D., Preston C. M., Stow N. D. 1991; Functional and genetic analysis of the role of Vmw110 in herpes simplex virus replication. In Herpesvirus Transcription and its Regulation pp. 50–76 Wagner E. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  10. Farrell M. J., Dobson A. T., Feldman L. T. 1991; Herpes simplex virus latency-associated transcript is a stable intron. Proceedings of the National Academy of Sciences, USA 88:790–794
    [Google Scholar]
  11. Feinberg A. P., Vogelstein B. 1984; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 137:266–267
    [Google Scholar]
  12. Forrester A., Farrell H., Wilkinson G., Kaye J., Davis-Poynter N., Minson T. 1992; Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. Journal of Virology 66:341–348
    [Google Scholar]
  13. Fraser N. W., Block T. M., Spivack J. G. 1992; The latency-associated transcripts of herpes simplex virus : RNA in search of function. Virology 191:1–8
    [Google Scholar]
  14. Goins W. F., Sternberg L. R., Croen K. D., Krause P. R., Hendricks R. L., Fink D. J., Straus S. E., Levine M., Glorioso J. C. 1994; A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. Journal of Virology 68:2239–2252
    [Google Scholar]
  15. Ho D. Y. 1992; Herpes simplex virus latency: molecular aspects. Progress in Medical Virology 39:76–115
    [Google Scholar]
  16. Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. 1988; A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166:254–257
    [Google Scholar]
  17. Krause P. R., Stanberry L. R., Bourne N., Connelly B., Kurawadwala J. F., Patel A., Straus S. E. 1995; Expression of the herpes simplex virus type 2 latency-associated transcript enhances spontaneous reactivation of genital herpes in latently infected guinea pigs. Journal of Experimental Medicine 181:297–306
    [Google Scholar]
  18. Kunkel T. A. 1985; Rapid and efficient site specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, USA 82:488–492
    [Google Scholar]
  19. Liu D. X., Cavanagh D., Green P., Inglis S. C. 1991; A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology 184:531–544
    [Google Scholar]
  20. McGeoch D. J., Cunningham C., McIntyre G., Dolan A. 1991; Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. Journal of General Virology 72:3057–3075
    [Google Scholar]
  21. McLean I. W., Nakane P. K. 1974; Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. The Journal of Histochemistry and Cytochemistry 22:1077–1083
    [Google Scholar]
  22. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  23. Mitchell W. J., Lirette R. P., Fraser N. W. 1990; Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. Journal of General Virology 71:125–132
    [Google Scholar]
  24. Nicosia M., Deshmane S. L., Zabolotny J. M., Valyi-Nagy T., Fraser N. M. 1993; Herpes simplex virus type 1 latency-associated transcript (LAT) promoter deletion mutants can express a 2-kilobase transcript mapping to the LAT region. Journal of Virology 67:7276–7283
    [Google Scholar]
  25. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  26. Rodahl E., Haarr L. 1997; Analysis of the 2-kilobase latency- associated transcript expressed in PC12 cells productively infected with herpes simplex virus type 1 : evidence for a stable, non-linear structure. Journal of Virology 71:1703–1707
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Sawtell N. M., Thompson R. L. 1992; Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. Journal of Virology 66:2157–2169
    [Google Scholar]
  29. Sedarati F., Izumi K. M., Wagner E. K., Stevens J. G. 1989; Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. Journal of Virology 63:4455–4458
    [Google Scholar]
  30. Simmons A., Nash A. A. 1984; Zosteriform spread ofherpes simplex virus as a model of recrudescence and its use to investigate the role of immune cells in prevention of recurrent disease. Journal of Virology 52:816–821
    [Google Scholar]
  31. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  32. Spivack J. G., Fraser N. W. 1987; Detection of herpes simplex virus type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  33. Spivack J. G., Fraser N. W. 1988; Expression of herpes simplex virus type 1 (HSV-1) latency-associated transcripts and transcripts affected by the deletion in avirulent mutant HFEM: evidence for a new class of HSV-1 genes. Journal of Virology 62:3281–3287
    [Google Scholar]
  34. Spivack J. G., Woods G. M., Fraser N. W. 1991; Identification of a novel latency-specific splice donor signal within the herpes simplex virus type 1 2·0 kilobase latency-associated transcript (LAT): translation inhibition of LAT open reading frames by the intron within the 2·0 kilobase LAT. Journal of Virology 65:6800–6810
    [Google Scholar]
  35. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus a gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  36. Stow N. D., Stow E. C. 1986; Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. Journal of General Virology 67:2571–2585
    [Google Scholar]
  37. Stow N. D., Wilkie N. M. 1976; An improved technique for obtaining enhanced infectivity with herpes simplex type 1 DNA. Journal of General Virology 33:447–458
    [Google Scholar]
  38. Stow N. D., McMonagle E. C., Davison A. J. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  39. Thompson R. L., Sawtell N. M. 1997; The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. Journal of Virology 71:5432–5440
    [Google Scholar]
  40. Wagner E. K., Devi-Rao G., Feldman L. T., Dobson A. T., Zhang Y.-F., Flanagan W. M., Stevens J. G. 1988; Physical characterisation of the herpes simplex transcript in neurons. Journal of Virology 62:1194–1202
    [Google Scholar]
  41. Wildy P., Field H. J., Nash A. A. 1982; Classical herpes latency revisited. In Virus Persistence Symposium 33 pp. 133–167 Mahy B. W. J., Minson A. C., Darby G. K. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  42. Wu T.-T., Su Y.-H., Block T. M., Taylor J. M. 1996; Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. Journal of Virology 70:5962–5967
    [Google Scholar]
  43. Yoshikawa T., Stanberry L. R., Bourne N., Krause P. R. 1996; Downstream regulatory elements increase acute and latent herpes simplex virus type 2 latency-associated transcript expression but do not influence recurrence phenotype or establishment of latency. Journal of Virology 70:1535–1541
    [Google Scholar]
  44. Zwaagstra J. C., Ghiasi H., Slanina S. M., Nesburn A. M., Wheatley S. C., Lillycrop K., Wood J., Latchman D. S., Patel K., Wechsler S. L. 1990; Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells : evidence for neuron specificity and for a large LAT transcript. Journal of Virology 64:5019–5028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-1-107
Loading
/content/journal/jgv/10.1099/0022-1317-79-1-107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error