1887

Abstract

Prototypic elements of a novel human endogenous retrovirus (HERV) family were identified and cloned from a human genomic library by the use of a fragment, HML-6, related to type A and type B retroviruses and class II HERVs. Out of 39 -hybridizing clones, five contained structures of full-length retroviral proviruses, with regions showing similarity to and , flanked by long terminal repeats (LTRs). Restriction mapping and partial sequence analysis of each full-length clone revealed few conserved restriction sites among HML-6 genomes, and about 20% sequence divergence over the reverse transcriptase region sequenced, suggesting that HML-6 constitutes a heterogeneous, but distinct family of elements belonging to the HERV-K superfamily. Sequence analysis of two clones, HML-6p and HML-6.17, revealed a lysine (K) tRNA UUU primer-binding site, and 40–68% nucleotide sequence similarity to LTR, and regions of type B retroviruses and class II HERVs. HERV-K (HML-6) elements are present at about 30–40 copies per haploid genome. The HML-6 LTRs contain putative progesterone-responsive elements, which may be involved in the regulation of HML-6 expression. Furthermore, there are about 50 additional solitary HML-6 LTRs per haploid genome. Such LTRs were integrated within the region of two clones belonging to the same HML-6 family, indicating that some site preference may be involved in HERV integration.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-7-1731
1997-07-01
2022-05-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/7/9225050.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-7-1731&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. Journal of Molecular Biology 215:403–410
    [Google Scholar]
  2. Andersson M.-L., Medstrand P., Yin H., Blomberg J. 1996; Differential expression ofhuman endogenous retroviral sequences similar to mouse mammary tumor virus in normal peripheral blood mononuclear cells. AIDS Research and Human Retroviruses 12:833–840
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  4. Bahram S., Spies T. 1996; Nucleotide sequence of a human MHC class I MICB cDNA. Immunogenetics 43:230–233
    [Google Scholar]
  5. Boller K., König H., Sauter M., Mueller-Lantzsch N., Löwer R., Löwer J., Kurth R. 1993; Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology 196:349–353
    [Google Scholar]
  6. Callahan R. 1988; Two families of human endogenous retroviral genomes. Eukaryotic transposable elements as mutagenic agents. Banbury Report 30:91–100
    [Google Scholar]
  7. Corell A., Martin-Villa J. M., Morales P., De Juan M. D., Varela P., Vicario J. L., Martinez-Laso J., Arnaiz-Villena A. 1991; Exon-2 nucleotide sequences, polymorphism and haplotype distribution of a new. HLA-DRB gene: HLA-DRB sigma. Molecular Immunology 28:533–543
    [Google Scholar]
  8. Dangel A. W., Mendoza A. R., Baker B. J., Daniel C. M., Carroll M. C., Wu L.-C., Yu C. Y. 1994; The dichotomous size variation of human complement C4 genes is mediated by a novel family of endogenous retroviruses, which also establishes species-species genomic patterns among Old World primates. Immunogenetics 40:425–436
    [Google Scholar]
  9. Eschenfeldt W. H., Puskas R. S., Berger S. L. 1987; Homopolymeric tailing. Methods in Enzymology 152:337–342
    [Google Scholar]
  10. Favor J., Morawetz C. 1992; Insertional mutations in mammals and mammalian cells. Mutation Research 284:53–74
    [Google Scholar]
  11. Franklin G. C., Chretien S. C., Hanson I. M., Rochefort H., May F. E. B., Westley B. R. 1988; Expression of human sequences related to those ofmouse mammary tumor virus. JournalofVirology 62:1203–1210
    [Google Scholar]
  12. Gelfand D. H., White T. J. 1990; Thermostable DNA polymerases. In PCR Protocols - A Guide to Methods and Applications pp 129–141 Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. Edited by San Diego: Academic Press;
    [Google Scholar]
  13. Goodchild N. L., Freeman J. D., Mager D. L. 1995; Spliced HERV- H endogenous retroviral sequences in human genomic DNA: evidence for amplification via retrotransposition. Virology 206:164–173
    [Google Scholar]
  14. Karlin S., Altschul S. F. 1990; Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proceedings of the National Academy of Sciences USA: 872264–2268
    [Google Scholar]
  15. Kidd A. H., Erasmus M. J., Tiemessen C. T. 1990; Fiber sequence heterogeneity in subgroup F adenoviruses. Virology 179:139–150
    [Google Scholar]
  16. Leib-Mösch C., Haltmeier M., Werner T., Geigl E.-M., Brack-Werner R., Francke U., Erfle V., Hehlmann R. 1993; Genomic distribution and transcription of solitary HERV-K LTRs. Genomics 18:261–269
    [Google Scholar]
  17. Li W.-H., Graur D. 1991; Evolution by transposition. In Fundamentals of Molecular Evolution pp 172–203 Sunderland, Mass.: Sinauer Associates;
    [Google Scholar]
  18. Löwer J., Wondrak E. M., Kurth R. 1987; Genome analysis and reverse transcriptase activity of human teratocarcinoma-derived retroviruses. Journal of General Virology 68:2807–2815
    [Google Scholar]
  19. Löwer R., Boller K., Hasenmaier B., Korbmacher C., Müller-Lantzsch N., Löwer J., Kurth R. 1993; Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proceedings of the National Academy of Sciences USA: 904480–4484
    [Google Scholar]
  20. Löwer R., Löwer J., Kurth R. 1996; The virus in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proceedings of the National Academy of Sciences USA: 935177–5184
    [Google Scholar]
  21. McClure M. A., Johnson M. S., Doolittle R. F. 1988; Sequence comparison of retroviral proteins : relative rates of change and general phylogeny. Proceedings of the National Academy of Sciences USA: 852469–2473
    [Google Scholar]
  22. Maeda N., Kim H.-S. 1990; Three independent insertions of retrovirus-like sequences in the haptoglobin gene cluster of primates. Genomics 8:671–683
    [Google Scholar]
  23. Mager D. L., Freeman J. D. 1995; HERV-H endogenous retrovirus: presence in the New World branch but amplification in the Old World primate lineage. Virology 213:395–404
    [Google Scholar]
  24. Mager D. L., Goodchild N. 1989; Homologous recombination between the LTRs of a human retrovirus-like element causes a 5 kb deletion in two siblings. American Journal of Human Genetics 45:848–854
    [Google Scholar]
  25. May F. E. B., Westley B. R. 1986; Structure of a human retroviral sequence related to mouse mammary tumor virus. Journal of Virology 60:743–749
    [Google Scholar]
  26. Mayer W. E., O’Huigin C., Klein J. 1993; Resolution of the HLA-DRB6 puzzle: a case of grafting a de novo-generated exon on an existing gene. Proceedings of the National Academy of Sciences USA: 9010720–10724
    [Google Scholar]
  27. Medstrand P., Blomberg J. 1993; Characterization of novel reverse transcriptase encoding human endogenous retroviral sequences similar to type A and type B retrovirus: differential transcription in normal human tissues. Journal of Virology 67:6778–6787
    [Google Scholar]
  28. Medstrand P., Lindeskog M., Blomberg J. 1992; Expression of human endogenous retroviral sequences in peripheral blood mononuclear cells of healthy individuals. Journal of General Virology 73:2463–2466
    [Google Scholar]
  29. Mietz J. A., Grossman Z., Lueders K. K., Kuff E. L. 1987; Nucleotide sequence of a complete mouse intracisternal A-particle genome : relationship to known aspects of particle assembly and function. Journal of Virology 61:3020–3029
    [Google Scholar]
  30. Moore R., Dixon M., Smith R., Peters G., Dickson C. 1987; .Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus : two frameshift suppression events are required for translation of gag and pol . Journal of Virology 61:480–490
    [Google Scholar]
  31. Mueller-Lantzsch N., Sauter M., Weiskircher A., Kramer K., Best K., Buck M., Grässer F. 1993; Human endogenous retroviral element K10 (HERV-K10) encodes a full-length Gag homologous 73-kDa protein and a functional protease. AIDS Research and Human Retroviruses 9:343–350
    [Google Scholar]
  32. Ono M., Yasunaga T., Miyata T., Ushikubo H. 1986; Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. Journal of Virology 60:589–598
    [Google Scholar]
  33. Ono M., Kawakami M., Ushikubo H. 1987; Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. Journal of Virology 61:2059–2062
    [Google Scholar]
  34. Patience C., Simpson G. R., Colletta A. A., Welch H. M., Weiss R. A., Boyd M. T. 1996; Human endogenous retrovirus expression and reverse transcriptase activity in the T47D mammary carcinoma cell line. Journal of Virology 70:2654–2657
    [Google Scholar]
  35. Rogers J. 1985; The origin and evolution of retrotransposons. International Review of Cytology 93:187–279
    [Google Scholar]
  36. Sandmeyer S., Hansen L., Chalker D. 1990; Integration specificity of retrotransposons and retroviruses. Annual Review of Genetics 24:491–518
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Scheidereit C., Beato M. 1984; Contacts between hormone receptor and DNA double helix within a glucocorticoid regulatory element of mouse mammary tumor virus. Proceedings of the National Academy of Sciences USA: 823029–3033
    [Google Scholar]
  39. Seifarth W., Skladny H., Krieg-Schneider F., Reichert A., Hehlmann R., Leib-Mösch C. 1995; Retrovirus-like particles released from human breast cancer cell line T47D display type B- and C-related endogenous retroviral sequences. Journal of Virology 69:6408–6416
    [Google Scholar]
  40. Shapiro M. B., Senapathy P. 1987; RNA splice junctions of different classes of eukaryotes : sequence statistics and functional implications in gene expression. Nucleic Acids Research 15:7155–7174
    [Google Scholar]
  41. Sonigo P., Barker C., Hunter E., Wain-Hobson G. 1986; Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus. Cell 45:377–385
    [Google Scholar]
  42. Sprinzl M., Moll J., Messner F., Hartmann T. 1985; Compilation of tRNA sequences. Nucleic Acids Research 13:1–49
    [Google Scholar]
  43. Taruscio D., Manuelidis L. 1991; Integration site preferences of endogenous retroviruses. Chromosoma 101:141–156
    [Google Scholar]
  44. Tassabehji M., Strachan T., Anderson M., Campbell R. D., Collier S., Lako M. 1994; Identification of a novel family of human endogenous retroviruses and characterization of one family member, HERV-K (C4), located in the complement C4 gene cluster. Nucleic Acids Research 22:5211–5217
    [Google Scholar]
  45. Ting C.-N., Rosenberg M. P., Snow C. M., Samuelson L., Meisler M. H. 1992; Endog enous retroviral sequences are required for tissue- specific expression of a human salivary amylase gene. Genes & Development 6:1457–1465
    [Google Scholar]
  46. Von der Ahe D. S., Janich S., Scheidereit C., Renkawitz G., Schutz G., Beato M. 1985; Glucocorticoid and progesterone receptors bind the same site in two hormonally regulated promoters. Nature 313:706–709
    [Google Scholar]
  47. Wallace M. R., Anderson L. B., Saulino A. M., Gregory P. E., Glover T. W., Collins F. S. 1991; A de novo Alu insertion results in neurofibromatosis type 1. Nature 353:864–866
    [Google Scholar]
  48. Wilkinson D. A., Mager D. L., Leong J. C. 1994; Endogenous human retroviruses. In The Retroviridae 3 pp 465–535 Levy J. Edited by New York: Plenum Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-7-1731
Loading
/content/journal/jgv/10.1099/0022-1317-78-7-1731
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error