1887

Abstract

The scaffolding protein and associated protease of the human herpesvirus varicella-zoster virus (VZV), encoded by genes 33·55 and 33 respectively, were synthesized in insect cells using a baculovirus expression system. The expressed 33·55 product formed numerous long, flexible, hollow rods, and in this respect differed from the herpes simplex virus type 1 (HSV-1) homologue which forms large aggregates consisting mainly of fibrous material interspersed with scaffold-like particles. Removal of 27 amino acids from the carboxy terminus of the VZV scaffolding protein by the gene 33 protease or expression of the cleaved product did not result in any discernible change in the morphology of the scaffolding protein. Again, this was in marked contrast to the situation in HSV-1 where removal of the 25 carboxy-terminal amino acids from the scaffolding protein by the associated protease or expression of VP22a results in the formation of large numbers of scaffold-like particles. Despite these differences, when cells were multiply infected with baculoviruses expressing the HSV-1 capsid shell proteins and the VZV scaffolding protein complete capsids were observed, suggesting that the VZV protein could act as a scaffold for the assembly of the HSV-1 capsid shell. The efficiency of capsid assembly was increased substantially by exchanging the 23 carboxy-terminal amino acids of the VZV scaffolding protein for the corresponding 22 carboxy-terminal amino acids of the HSV-1 homologue, supporting previous work which showed that this region was critical for the formation of intact capsids.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-7-1633
1997-07-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/7/9225040.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-7-1633&mimeType=html&fmt=ahah

References

  1. Addison A., Rixon F. J., Preston V. G. 1984; Characterization of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology 138:246–259
    [Google Scholar]
  2. Albrecht J.-C., Nicholas J., Biller D., Cameron K. R., Biesinger B., Newman C., Wittman S., Craxton M. A., Coleman H., Fleckenstein B., Honess R. W. 1992; Primary structure of the herpesvirus saimiri genome. Journal of Virology 66:5047–5058
    [Google Scholar]
  3. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211
    [Google Scholar]
  4. Belyaev A. S., Roy P. 1993; Development of baculovirus triple and quadruple expression vectors: coexpression of three or four bluetongue virus proteins and the synthesis of blue tongue virus-like particles in insect cells. Nucleic Acids Research 21:1219–1223
    [Google Scholar]
  5. Booy F. P., Newcomb W. W., Trus B. L., Brown J. C., Baker T. S., Steven A. C. 1991; Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64:1007–1015
    [Google Scholar]
  6. Booy F. P., Trus B. L., Newcomb W. W., Brown J. C., Conway J. F., Steven A. C. 1994; Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proceedings of the National Academy of Sciences USA: 915652–5656
    [Google Scholar]
  7. Camacho A., Tabares E. 1996; Characterization of the genes, including that encoding the viral proteinase, contained in BamHI restriction fragment 9 of the pseudorabies virus genome. Journal of General Virology 77:1865–1874
    [Google Scholar]
  8. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A.III Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of the sequences of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154:129–173
    [Google Scholar]
  9. Davison A. J., Scott J. E. 1983; Molecular cloning of the varicellazoster virus genome and derivation of six restriction endonuclease maps. Journal of General Virology 64:1811–1814
    [Google Scholar]
  10. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  11. Davison M. D., Rixon F. J., Davison A. J. 1992; Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. Journal of General Virology 73:2709–2713
    [Google Scholar]
  12. Desai P., Person S. 1996; Molecular interactions between the HSV- 1 capsid proteins as measured by the yeast two-hybrid system. Virology 220:516–521
    [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  14. Dilanni C. L., Drier D. A., Deckman I. C., McCann P. J.III Liu F., Roizman B., Colonno R. J., Cordingley M. G. 1993a; Identification of the herpes simplex virus-1 protease cleavage sites by direct sequence analysis of autoproteolytic cleavage products. Journal of Biological Chemistry 268:2048–2051
    [Google Scholar]
  15. Dilanni C. L., Mapelli C., Drier D. A., Tsao J., Natarajan S., Riexinger D., Festin S. M., Bolgar M., Yamanaka G., Weinheimer S. P., Meyers C. A., Colonno R. J., Cordingley M. G. 1993b; In vitro activity of the herpes simplex virus type 1 protease with peptide substrates. Journal of Biological Chemistry 268:25449–25454
    [Google Scholar]
  16. Dilanni C. L., Stevens J. T., Bolgar M., OBoyle D. R.II Weinheimer S. P., Colonno R. J. 1994; Identification of the serine residue at the active site of the herpes simplex virus type-1 protease. Journal ofBiological Chemistry 269:12672–12676
    [Google Scholar]
  17. Friedrichs W. E., Grose C. 1986; Varicella-zoster virus p32/p36 complex is present in both the viral capsid and the nuclear matrix of the infected cell. Journal of Virology 57:155–164
    [Google Scholar]
  18. Gao M., Matusick-Kumar L., Hurlburt W., FeuerDitusa S., Newcomb W. W., Brown J. C., McCann P. J.III Deckman I., Colonno R. J. 1994; The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. Journal of Virology 68:3702–3712
    [Google Scholar]
  19. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E. D., Efstathiou S., Craxton M., Macaulay H. A. 1995; The DNA sequence of human herpesvirus-6: structure, coding content and genome evolution. Virology 209:29–51
    [Google Scholar]
  20. Griffin A. M. 1990; The complete nucleotide sequence of the capsid p40 gene from infectious laryngotracheitis virus. Nucleic Acids Research 18:3664
    [Google Scholar]
  21. Haanes E. J., Thomsen D. R., Martin S., Homa F. L., Lowery D. E. 1995; The bovine herpesvirus 1 maturational proteinase and scaffold proteins can substitute for the homologous herpes simplex virus type 1 proteins in the formation of hybrid type B capsids. Journal of Virology 69:7375–7379
    [Google Scholar]
  22. Hong Z., Beaudet-Miller M., Durkin J., Zhang R., Kwong A. D. 1996; Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein. Journal of Virology 70:533–540
    [Google Scholar]
  23. Kennard J., Rixon F. J., McDougall I. M., Tatman J. D., Preston V. G. 1995; The 25 amino acid residues at the carboxy terminus of the herpes simplex virus type 1 UL26ʹ5 protein are required for the formation of the capsid shell around the scaffold. Journal of General Virology 76:1611–1621
    [Google Scholar]
  24. Liu F., Roizman B. 1991a; The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. Journal of Virology 65:206–212
    [Google Scholar]
  25. Liu F., Roizman B. 1991b; The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. JournalofVirology 65:5149–5156
    [Google Scholar]
  26. Liu F., Roizman B. 1993; Characterization of the protease and other products of the amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. Journal of Virology 67:1300–1309
    [Google Scholar]
  27. Livingstone C., Jones I. 1989; Baculovirus expression vectors with single strand capability. Nucleic Acids Research 17:2366
    [Google Scholar]
  28. McCann P. J.III O’Boyle D. R.II Deckman I. C. 1994; Investigation of the specificity of the herpes simplex virus type 1 protease by point mutagenesis of the autoproteolysis sites. Journal of Virology 68:526–529
    [Google Scholar]
  29. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  30. McLauchlan J., Leifkens K., Stow N. D. 1994; The herpes simplex virus type 1 UL37 gene product is a component of virus particles. Journal of General Virology 75:2047–2052
    [Google Scholar]
  31. Matusick-Kumar L., Hurlburt W., Weinheimer S. P., Newcomb W. W., Brown J. C., Gao M. 1994; Phenotype of the herpes simplex virus type 1 protease substrate ICP35 mutant virus. Journal of Virology 68:5384–5394
    [Google Scholar]
  32. Matusick-Kumar L., Newcomb W. W., Brown J. C., McCann P. J.III Hurlburt W., Weinheimer S. P., Gao M. 1995; The C-terminal 25 amino acids of the protease and its substrate ICP35 of herpes simplex virus type 1 are involved in the formation of sealed capsids. Journal of Virology 69:4347–4356
    [Google Scholar]
  33. Newcomb W. W., Brown J. C. 1991; Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. Journal of Virology 65:613–620
    [Google Scholar]
  34. Newcomb W. W., Trus B. L., Booy F. P., Steven A. C., Wall J. S., Brown J. C. 1993; Structure of the herpes simplex virus capsid: molecular composition of the pentons and triplexes. Journal of Molecular Biology 232:499–511
    [Google Scholar]
  35. Nicholas J. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. Journal of Virology 70:5975–5989
    [Google Scholar]
  36. Nicholson P., Addison C., Cross A. M., Kennard J. C., Preston V. G., Rixon F. J. 1994; Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a. Journal of General Virology 75:1091–1099
    [Google Scholar]
  37. Preston V. G., Coates J. A. V., Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of viral DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  38. Preston V. G., Rixon F. J., McDougall I. M., McGregor M., AlKobaisi M. F. 1992; Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virology 186:87–98
    [Google Scholar]
  39. Preston V. G., Al-Kobaisi M. F., McDougall I. M., Rixon F. J. 1994; The herpes simplex virus gene UL26 proteinase in the presence of the UL26ʹ5 gene product promotes the formation of scaffold-like structures. Journal of General Virology 75:2355–2366
    [Google Scholar]
  40. Rixon F. J., Cross A. M., Addison C., Preston V. G. 1988; The products of herpes simplex virus type 1 gene UL26 are strongly associated with empty but not full capsids. Journal of General Virology 69:2879–2891
    [Google Scholar]
  41. Rost B. 1996; PHD: predicting one-dimensional protein structure by profile based neural networks. Methods in Enzymology 266:525–539
    [Google Scholar]
  42. Schrag J. D., Prasad B. V. V., Rixon F. J., Chiu W. 1989; Threedimensional structure of the HSV-1 nucleocapsid. Cell 56:651–660
    [Google Scholar]
  43. Steffy K. R., Schoen S., Chen C.-M. 1995; Nucleotide sequence of the herpes simplex virus type 2 gene encoding the protease and capsid protein ICP35. Journal of General Virology 76:1069–1072
    [Google Scholar]
  44. Tatman J. D., Preston V. G., Nicholson P., Elliott R. M., Rixon F. J. 1994; Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. Journal of General Virology 75:1101–1113
    [Google Scholar]
  45. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  46. Telford E. A. R., Watson M. S., Aird H. C., Perry J., Davison A. J. 1995; The DNA sequence of equine herpesvirus 2. Journal of Molecular Biology 249:520–528
    [Google Scholar]
  47. Thomsen D. R., Roof L. L., Homa F. L. 1994; Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. Journal of Virology 68:2442–2457
    [Google Scholar]
  48. Thomsen D. R., Newcomb W. W., Brown J. C., Homa F. L. 1995; Assembly of the herpes simplex virus capsid: requirement for the carboxy-terminal twenty-five amino acids ofthe proteins encoded by the UL26 and UL26*5 genes. Journal of Virology 69:3690–3703
    [Google Scholar]
  49. Welch A. R., Woods A. S., McNally L. M., Cotter J. R., Gibson W. 1991; A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proceedings for the National Academy of Sciences USA: 8810792–10796
    [Google Scholar]
  50. Zhou Z. H., Prasad B. V. V., Jakana J., Rixon F. J., Chiu W. 1994; Protein subunit structures in the herpes simplex virus capsid determined from 400-kV spot-scan electron cryomicroscopy. Journal of Molecular Biology 242:456–469
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-7-1633
Loading
/content/journal/jgv/10.1099/0022-1317-78-7-1633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error