Skip to content
1887

Abstract

It has been previously shown that rotavirus triplelayered particles induce permeabilization of liposomes and membrane vesicles. These effects were mediated by one or both of the solubilized outer-capsid proteins, VP4 and VP7. Permeabilization was dependent on trypsin treatment of the viral particles, suggesting that VP4 was involved. To analyse the respective roles of the outer-capsid proteins in this permeabilization process, we have used membrane vesicles loaded with carboxyfluorescein and virus-like particles derived from insect cells co-expressing various sets of capsid proteins. Virus-like particles containing VP2, VP6 and VP7 (VLP2/6/7) are as efficient in permeabilizing vesicles as triple-layered particles. As with double-layered particles, virus-like particles made of VP2 and VP6 had no effect on vesicle permeabilization. Permeabilization of membrane vesicles required trypsinization of the VP7 solubilized from VLP2/6/7. These results show that solubilized and trypsinized VP7 is able to induce membrane permeabilization, independently of the presence of VP4.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-6-1367
1997-06-01
2025-01-17
Loading full text...

Full text loading...

References

  1. Alaoui M., Alvarado F., Vasseur M. 1997; Trypsin cleavage of recombinant RF VP4, the rotavirus outer-capsid protein, is required to induce membrane permeabilization. FASEB Journal in press
    [Google Scholar]
  2. Clark S. M., Roth J. R., Clark L., Barnett B. B., Spendlove R. S. 1981; Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. Journal of Virology 39:816–822
    [Google Scholar]
  3. Falconer M. M., Gilbert J. M., Roper A. M., Greenberg H. B., Gavora J. S. 1995; Rotavirus induced fusion from without in tissue culture cells. Journal of Virology 69:5582–5591
    [Google Scholar]
  4. Hauser H., Howell K., Dawson R. M. C., Bowyer D. E. 1980; Rabbit small intestinal brush border membrane preparation and lipid composition. Biochimica et Biophysica Acta 602:567–577
    [Google Scholar]
  5. Labbé M., Charpilienne A., Crawford S. E., Estes M. K., Cohen J. 1991; Expression of rotavirus VP2 produces empty corelike particles. Journal of Virology 65:2946–2952
    [Google Scholar]
  6. Ludert J. E., Feng N. G., Yu J. H., Broome R. L., Hoshino Y., Greenberg H. B. 1996; Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. Journal of Virology 70:487–493
    [Google Scholar]
  7. Mattion N. M., Cohen J., Estes M. J. 1994; Rotavirus proteins. In Viral Infection in the Gastrointestinal Tract pp. 169–249 Kapikian A. Edited by New York: Marcel Dekker;
    [Google Scholar]
  8. Mendez E., Arias C. F., Lopez S. 1996; Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. Journal of Virology 70:1218–1222
    [Google Scholar]
  9. Nandi P., Charpilienne A., Cohen J. 1992; Interaction of rotavirus particles with liposomes. Journal of Virology 66:3363–3367
    [Google Scholar]
  10. Prasad B. V. V., Wang G. J., Clerx J. P., Chiu W. 1988; Three-dimensional structure of rotavirus. Journal of Molecular Biology 199:269–275
    [Google Scholar]
  11. Ruiz M. C., Alonso Torre S. R., Charpilienne A., Vasseur M., Michelangeli F., Cohen J., Alvarado F. 1994; Rotavirus interaction with isolated membrane vesicles. Journal of Virology 68:4009–4016
    [Google Scholar]
  12. Ruiz M. C., Abad M. J., Charpilienne A., Cohen J., Michelangeli F. 1995; Induction of large, stable, pores in MA104 cells by doubleshelled particles of rotavirus. Fifth International Symposium on DoubleStranded RNA Viruses Jerba, Tunisia: Abstract
    [Google Scholar]
  13. Ruiz M. C., Charpilienne A., Liprandi F., Gajardo R., Michelangeli F., Cohen J. 1996; Concentration of Ca2+ that solubilizes outer capsid proteins from rotavirus particles is dependent on the strain. Journal of Virology 70:4877–4883
    [Google Scholar]
  14. Suzuki H., Kitaoka S., Konno T., Sato T., Ishida N. 1985; Two modes ofhuman rotavirus entry into MA 104 cells. Journal of Virology 85:25–34
    [Google Scholar]
  15. Tian P., Ball J. M., Zeng C. Q. Y., Estes M. K. 1996; The rotavirus nonstructural glycoprotein NSP4 possesses membrane destabilization activity. Journal of Virology 70:6973–6981
    [Google Scholar]
  16. Tosser G., Labbé M., Bremont M., Cohen J. 1992; Expression of the major capsid protein VP6 of the group C rotavirus and synthesis of chimeric single-shelled particles by using recombinant baculoviruses. Journal of Virology 66:251–257
    [Google Scholar]
  17. Yeager M., Dryden K. A., Olson N. H., Greenberg H. B., Baker T. S. 1990; Three-dimensional structure of rhesus rotavirus by cryo-electron microscopy and image reconstruction. Journal of Cell Biology 110:2133–2144
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-78-6-1367
Loading
/content/journal/jgv/10.1099/0022-1317-78-6-1367
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error