1887

Abstract

It has been previously shown that rotavirus triplelayered particles induce permeabilization of liposomes and membrane vesicles. These effects were mediated by one or both of the solubilized outer-capsid proteins, VP4 and VP7. Permeabilization was dependent on trypsin treatment of the viral particles, suggesting that VP4 was involved. To analyse the respective roles of the outer-capsid proteins in this permeabilization process, we have used membrane vesicles loaded with carboxyfluorescein and virus-like particles derived from insect cells co-expressing various sets of capsid proteins. Virus-like particles containing VP2, VP6 and VP7 (VLP2/6/7) are as efficient in permeabilizing vesicles as triple-layered particles. As with double-layered particles, virus-like particles made of VP2 and VP6 had no effect on vesicle permeabilization. Permeabilization of membrane vesicles required trypsinization of the VP7 solubilized from VLP2/6/7. These results show that solubilized and trypsinized VP7 is able to induce membrane permeabilization, independently of the presence of VP4.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-6-1367
1997-06-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/6/9191931.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-6-1367&mimeType=html&fmt=ahah

References

  1. Alaoui M., Alvarado F., Vasseur M. 1997; Trypsin cleavage of recombinant RF VP4, the rotavirus outer-capsid protein, is required to induce membrane permeabilization. FASEB Journal in press
    [Google Scholar]
  2. Clark S. M., Roth J. R., Clark L., Barnett B. B., Spendlove R. S. 1981; Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. Journal of Virology 39:816–822
    [Google Scholar]
  3. Falconer M. M., Gilbert J. M., Roper A. M., Greenberg H. B., Gavora J. S. 1995; Rotavirus induced fusion from without in tissue culture cells. Journal of Virology 69:5582–5591
    [Google Scholar]
  4. Hauser H., Howell K., Dawson R. M. C., Bowyer D. E. 1980; Rabbit small intestinal brush border membrane preparation and lipid composition. Biochimica et Biophysica Acta 602:567–577
    [Google Scholar]
  5. Labbé M., Charpilienne A., Crawford S. E., Estes M. K., Cohen J. 1991; Expression of rotavirus VP2 produces empty corelike particles. Journal of Virology 65:2946–2952
    [Google Scholar]
  6. Ludert J. E., Feng N. G., Yu J. H., Broome R. L., Hoshino Y., Greenberg H. B. 1996; Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. Journal of Virology 70:487–493
    [Google Scholar]
  7. Mattion N. M., Cohen J., Estes M. J. 1994; Rotavirus proteins. In Viral Infection in the Gastrointestinal Tract pp. 169–249 Kapikian A. Edited by New York: Marcel Dekker;
    [Google Scholar]
  8. Mendez E., Arias C. F., Lopez S. 1996; Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. Journal of Virology 70:1218–1222
    [Google Scholar]
  9. Nandi P., Charpilienne A., Cohen J. 1992; Interaction of rotavirus particles with liposomes. Journal of Virology 66:3363–3367
    [Google Scholar]
  10. Prasad B. V. V., Wang G. J., Clerx J. P., Chiu W. 1988; Three-dimensional structure of rotavirus. Journal of Molecular Biology 199:269–275
    [Google Scholar]
  11. Ruiz M. C., Alonso Torre S. R., Charpilienne A., Vasseur M., Michelangeli F., Cohen J., Alvarado F. 1994; Rotavirus interaction with isolated membrane vesicles. Journal of Virology 68:4009–4016
    [Google Scholar]
  12. Ruiz M. C., Abad M. J., Charpilienne A., Cohen J., Michelangeli F. 1995; Induction of large, stable, pores in MA104 cells by doubleshelled particles of rotavirus. Fifth International Symposium on DoubleStranded RNA Viruses Jerba, Tunisia: Abstract
    [Google Scholar]
  13. Ruiz M. C., Charpilienne A., Liprandi F., Gajardo R., Michelangeli F., Cohen J. 1996; Concentration of Ca2+ that solubilizes outer capsid proteins from rotavirus particles is dependent on the strain. Journal of Virology 70:4877–4883
    [Google Scholar]
  14. Suzuki H., Kitaoka S., Konno T., Sato T., Ishida N. 1985; Two modes ofhuman rotavirus entry into MA 104 cells. Journal of Virology 85:25–34
    [Google Scholar]
  15. Tian P., Ball J. M., Zeng C. Q. Y., Estes M. K. 1996; The rotavirus nonstructural glycoprotein NSP4 possesses membrane destabilization activity. Journal of Virology 70:6973–6981
    [Google Scholar]
  16. Tosser G., Labbé M., Bremont M., Cohen J. 1992; Expression of the major capsid protein VP6 of the group C rotavirus and synthesis of chimeric single-shelled particles by using recombinant baculoviruses. Journal of Virology 66:251–257
    [Google Scholar]
  17. Yeager M., Dryden K. A., Olson N. H., Greenberg H. B., Baker T. S. 1990; Three-dimensional structure of rhesus rotavirus by cryo-electron microscopy and image reconstruction. Journal of Cell Biology 110:2133–2144
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-6-1367
Loading
/content/journal/jgv/10.1099/0022-1317-78-6-1367
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error