1887

Abstract

In nature, nuclear polyhedrosis viruses (NPV) are transmitted when susceptible insect larvae ingest viral occlusion bodies (OB). These dissociate in the alkaline environment of the midgut and release encapsulated virions (PDV) which bind to midgut epithelial cells and initiate an infection. A previous study showed that expression of the NPV (AcMNPV) p74 gene during replication is essential for the production of infectious OB. A set of p74 deletion and overexpression recombinants was used for the production and screening of monoclonal antibodies, and for an investigation of gross cytopathology and localization of p74. No differences in virus structure or morphogenesis were observed in infected cells when the p74 gene of AcMNPV was deleted, even though the infectivity of OB harvested from the cells was abolished when they were fed to larvae. Mutant OB released virus particles and degraded insect peritrophic membrane as in infections with wild-type virus; in addition, virions purified from mutant OB were infectious when injected into the haemocoel of larvae. Western blot analysis confirmed that p74 was associated with the PDV and could not be detected in the budded form virion phenotype. The polypeptide was readily degraded by treatment of purified PDV with proteinase K, in the presence and absence of detergent, and could be extracted from PDV by a non-ionic detergent treatment. The data are consistent with p74 being a structural polypeptide of the PDV phenotype, most probably as a component associated with the outside surface of the virion envelope. Its presence is shown to be essential for primary infection of midgut cells of insect larvae.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-12-3091
1997-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/12/9400957.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-12-3091&mimeType=html&fmt=ahah

References

  1. Adams G. A., Rose J. K. 1985; Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell 41:1007–1015
    [Google Scholar]
  2. Arif B. M., Brown K. W. 1975; Purification and properties of a nuclearpolyhedrosisvirus from Choristoneurafumiferana. Canadian Journal of Microbiology 21:1224–1231
    [Google Scholar]
  3. Blissard G. W., Rohrmann G. F. 1989; Location, sequence, transcriptional mapping and temporal expression of the gp64 gene of the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology 170:537–555
    [Google Scholar]
  4. Blissard G. W., Wenz J. R. 1992; Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. Journal of Virology 66:6829–6835
    [Google Scholar]
  5. Braunagel S. C., Summers M. D. 1994; Autographa californica nuclear polyhedrosis virus, PDV and ECV viral envelopes and nucleocapsids : structural proteins; antigens; lipid and fatty acid profiles. Virology 202:315–328
    [Google Scholar]
  6. Braunagel S. C., Elton D. M., Ma H., Summers M. D. 1996a; Identification and analysis of an Autographa californica nuclear poly- hedrosis virus structural protein of the occlusion-derived virus envelope: ODV-E56. Virology 217:97–110
    [Google Scholar]
  7. Braunagel S. C., He H., Ramamurthy P., Summers M. D. 1996b; Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222:100–114
    [Google Scholar]
  8. Brown M., Faulkner P. 1978; Plaque assay of nuclear polyhedrosis viruses in cell culture. Applied and Environmental Microbiology 36:31–35
    [Google Scholar]
  9. Brown M., Crawford A. M., Faulkner P. 1979; Genetic analysis of a baculovirus, Autographa californica nuclear polyhedrosis virus. 1. Isolation of temperature sensitive mutants and assortment into complementation groups. Journal of Virology 31:190–198
    [Google Scholar]
  10. Crowell R. L., Lonberg-Holm K. 1986; Virus attachment and entry into cells. Proceedings ofthe ASM Conference, Philadelphia, 10–13 April 1985. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Davey J. 1989; Sorting out the secretory pathway. Bioessays 11:185–187
    [Google Scholar]
  12. Davis G. L., Hunter E. 1987; A charged amino acid substitution within the transmembrane anchor of the Rous sarcoma virus envelope glycoprotein affects surface expression but not intracellular transport. Journal of Cell Biology 105:1191–1203
    [Google Scholar]
  13. Derksen A. C. G., Granados R. R. 1988; Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity. Virology 167:242–250
    [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  15. Eisenberg D., Wesson M. 1990; The most highly amphiphilic alphahelices include two amino acid segments in human immunodeficiency virus glycoprotein 41. Biopolymers 29:171–177
    [Google Scholar]
  16. Eisenberg D., Schwarz E., Komaromy M., Wall R. 1984; Analysis of membrane and surface protein sequences with the hydrophobic moment plot. Journal of Molecular Biology 179:125–142
    [Google Scholar]
  17. Engelhard E. K., Kam-Morgan L. N. W., Washburn J. O., Volkman L. E. 1994; The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proceedings ofthe National Academy of Sciences USA: 913224–3227
    [Google Scholar]
  18. Eskridge E., Shields D. 1986; The NH2 terminus of preproinsulin directs the translocation and glycosylation of a bacterial cytoplasmic protein by mammalian microsomal membranes. Journal of Cell Biology 103:2263–2272
    [Google Scholar]
  19. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. 1991; Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Archives of Virology, Supplementum 2:117–123
    [Google Scholar]
  20. Fraser M. J. 1986; Ultrastructural observations of virion maturation in Autographa californica nuclear polyhedrosis virus infected Spodoptera frugiperda cell cultures. Journal of Ultrastructure and Molecular Structure Research 95:189–195
    [Google Scholar]
  21. Fujii G., Horvath S., Woodward S., Eiserling F., Eisenberg D. 1992; A molecular model for membrane fusion based on solution studies of an amphiphilic peptide from HIV gp41. Protein Science 1:1454–1464
    [Google Scholar]
  22. Gallagher P., Henneberry J., Wilson I., Sambrook J., Gething M.-J. 1988; Addition of carbohydrate side chains at novel sites on influenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule. Journal of Cell Biology 107:2059–2073
    [Google Scholar]
  23. Gardiner G. R., Stockdale H. 1975; Two tissue culture media for production of lepidopteran cells and nuclear polyhedrosis viruses. Journal of Invertebrate Pathology 25:363–370
    [Google Scholar]
  24. Garnier J., Osguthorpe D. J., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120:97–120
    [Google Scholar]
  25. Goding J. W. 1987 Monoclonal Antibodies :Principles and Practice London: Academic Press;
    [Google Scholar]
  26. Granados R. R., Lawler K. A. 1981; In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108:297–308
    [Google Scholar]
  27. Gribskov M., Luthy R., Eisenberg D. 1990; Profile analysis. Methods in Enzymology 183:146–159
    [Google Scholar]
  28. Harlow E., Lane D. 1988 Antibodies :A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Hill J. E., Kuzio J., Wilson J. A., Mackinnon E. A., Faulkner P. 1993; Nucleotide sequence of the p74 gene of a baculovirus pathogenic to the spruce budworm, Choristoneura fumiferana multicapsid nuclear polyhedrosis virus. Biochimica et Biophysica Acta 1172:187–189
    [Google Scholar]
  30. Hohmann A. W., Faulkner P. 1983; Monoclonal antibodies to baculovirus structural proteins : determination of specificities by Western blot analysis. Virology 125:432–444
    [Google Scholar]
  31. Hong T., Braunagel S. C., Summers M. D. 1994; Transcription, translation, and cellular localization of PDV-E66 : a structural protein of the PDV envelope of Autographa californica nuclear polyhedrosis virus. Virology 204:210–222
    [Google Scholar]
  32. Imanaka T., Small G. M., Lazarow P. B. 1987; Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. Journal of Cell Biology 105:2915–2922
    [Google Scholar]
  33. Jacques R. P. 1967; The persistence of a nuclear polyhedrosis virus in the habitat of the host insect, Trichoplusia ni. I. Polyhedra deposited on foliage. Canadian Entomologist 99:785–794
    [Google Scholar]
  34. Kawamoto F., Suto C., Kumada N., Kobayashi M. 1977; Cytoplasmic budding of a nuclear polyhedrosis virus and comparative ultrastructural studies of envelopes. Microbiology and Immunology 21:255–265
    [Google Scholar]
  35. Keddie B. A., Volkman L. E. 1985; Infectivity difference between the two phenotypes of Autographa californica nuclear polyhedrosis virus : importance of the 64K envelope glycoprotein. Journal of General Virology 66:1195–1200
    [Google Scholar]
  36. Keddie B. A., Aponte G. W., Volkman L. E. 1989; The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 2 43:1728–1730
    [Google Scholar]
  37. Kozlov E. A., Levitina T. L., Gusak N. M. 1986; The primary structure of baculovirus inclusion body proteins. Evolution and structure- function aspects. Current Topics in Microbiology and Immunology 131:135–164
    [Google Scholar]
  38. Kuzio J., Jacques R., Faulkner P. 1989; Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173:759–763
    [Google Scholar]
  39. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  40. Lu A., Carstens E. B. 1992; Nucleotide sequence and transcriptional analysis of the p80 gene of Autographa californica nuclear polyhedrosis virus : a homologue of the Orgyia pseudotsugata nuclear polyhedrosis virus capsid-associated gene. Virology 190:201–209
    [Google Scholar]
  41. Mackinnon E. A., Henderson J. F., Stoltz D. B., Faulkner P. 1974; Morphogenesis of nuclear polyhedrosis virus under conditions of prolonged passage in vitro. Journal of Ultrastructure Research 49:419–435
    [Google Scholar]
  42. Maeda S., Kamita S. G., Kataska H. 1991; The basic DNA-binding protein of Bombyx mori nuclear polyhedrosis virus: the existence of an additional arginine repeat. Virology 180:807–810
    [Google Scholar]
  43. Monsma S. A., Blissard G. W. 1995; Identification of a membrane fusion domain and an oligomerization domain in the baculovirus gp64 envelope fusion protein. Journal of Virology 69:2583–2595
    [Google Scholar]
  44. Monsma S. A., Oomens A. G. P., Blissard G. W. 1996; The gp64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. Journal of Virology 70:4607–4616
    [Google Scholar]
  45. Müller R., Pearson M. N., Russell R. L. Q., Rohrmann G. F. 1990; A capsid-associated protein of the multicapsid nuclear polyhedrosis virus of Orgyia pseudotsugata : genetic location, sequence, transcriptional mapping, and immunocytochemical characterizations. Virology 176:133–144
    [Google Scholar]
  46. O’Reilly D. R., Miller L. K., Luckow V. A. 1992 Baculovirus Expression Vectors. A Laboratory Manual New York: W. H. Freeman;
    [Google Scholar]
  47. Pratt J. M. 1989; Proteases as topological probes for membrane proteins. In Proteolytic Enzymes: a Practical Approach pp 181–192 Beynon R. J., Bond J. S. Edited by Oxford: IRL Press;
    [Google Scholar]
  48. Rohrmann G. F. 1992; Baculovirus structural proteins. Journal of General Virology 73:749–761
    [Google Scholar]
  49. Russell R. L. Q., Rohrmann G. F. 1993; A 25-kDa protein is associated with the envelopes of occluded baculovirus virions. Virology 195:532–540
    [Google Scholar]
  50. Russell R. L. Q., Pearson M. N., Rohrmann G. F. 1991; Immuno- electron microscopic examination of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus-infected Lymantria dispar cells : time course and localization of major polyhedron-associated proteins. Journal of General Virology 72:275–283
    [Google Scholar]
  51. Stoltz D. B., Pavan C., da Cunha A. B. 1973; Nuclear polyhedrosis virus : a possible example of de novo intranuclear membrane morphogenesis. Journal of General Virology 19:145–150
    [Google Scholar]
  52. Summers M. D., Smith G. E. 1976; Comparative studies of baculovirus granulins and polyhedrins. Intervirology 6:168–180
    [Google Scholar]
  53. Tanada Y., Hess R. T. 1976; Development of a nuclear polyhedrosis virus in midgut cells and penetration of the virus into the hemocoel of the armyworm, Pseudaletia unipuncta. Journal of Invertebrate Pathology 28:67–76
    [Google Scholar]
  54. Theilmann D. A., Chantler J. K., Stewart S., Flipsen H. T., Vlak J. M., Crook N. E. 1996; Characterization of a highly conserved baculovirus structural protein that is specific for occlusion-derived virions. Virology 218:148–158
    [Google Scholar]
  55. Thiem S. M., Miller L. K. 1989; Identification, sequence, and transcriptional mapping of the major capsid protein gene of the baculovirus Autographa californica nuclear polyhedrosis virus. Journal of Virology 63:2008–2018
    [Google Scholar]
  56. Tweeten K. A., Bulla L. A., Consigli R. A. 1980; Characterization of an extremely basic protein derived from granulosis virus nucleocapsid. Journal of Virology 33:866–876
    [Google Scholar]
  57. Vaughn J. L., Dougherty E. M. 1985; The replication of baculo- viruses. In Viral Insecticides for Biological Control pp 569–633 Maramorosch K., Sherman K. E. Edited by New York: Academic Press;
    [Google Scholar]
  58. Vaughn J. L., Goodwin R. H., Tompkin G. L., McCawley P. 1977; The establishment of two insect cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13:213–217
    [Google Scholar]
  59. Vialard J. E., Richardson C. D. 1993; The 1629-nucleotide open reading frame located downstream of the Autographa californica nuclear polyhedrosis virus polyhedrin gene encodes nucleocapsid-associated phosphoprotein. Journal of Virology 67:5859–5866
    [Google Scholar]
  60. Volkman L. E. 1983; Occluded and budded Autographa californica nuclear polyhedrosis virus : immunological relatedness of structural proteins. Journal of Virology 46:221–229
    [Google Scholar]
  61. Volkman L. E., Goldsmith P. A. 1985; Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: inhibition of entry by adsorptive endocytosis. Virology 143:185–195
    [Google Scholar]
  62. Volkman L. E., Summers M. D. 1977; Autographa californica nuclear polyhedrosis virus: comparative infectivity of the occluded, alkali- liberated, and nonoccluded forms. Journal of Invertebrate Pathology 30:102–103
    [Google Scholar]
  63. Volkman L. E., Goldsmith P. A., Hess R. T., Faulkner P. 1984; .Neutralization of budded Autographa californica NPV by a monoclonal antibody: identification of the target antigen. Virology 133:354–362
    [Google Scholar]
  64. Volkman L. E., Goldsmith P. A., Hess R. T. 1986; Alternate pathway of entry of budded Autographa californica nuclear polyhedrosis virus: fusion at the plasma membrane. Virology 148:288–297
    [Google Scholar]
  65. Whitford M., Faulkner P. 1992a; A structural polypeptide of the baculovirus Autographa californica nuclear polyhedrosis virus contains O-linked N-acetylglucosamine. Journal of Virology 66:3324–3329
    [Google Scholar]
  66. Whitford M., Faulkner P. 1992b; Nucleotide sequence and transcriptional analysis of a gene encoding gp41, a structural glycoprotein of the baculovirus Autographa californica nuclear polyhedrosis virus. Journal of Virology 66:4763–4768 Erratum 67, 2427;1993
    [Google Scholar]
  67. Whitford M., Stewart S., Kuzio J., Faulkner P. 1989; Identification and sequence analysis of a gene encoding gp67, an abundant envelope glycoprotein of the baculovirus, Autographa californica nuclear poly- hedrosis virus. Journal of Virology 63:1393–1399
    [Google Scholar]
  68. Whitt M. A., Manning J. E. 1988; A phosphorylated 34-kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. Virology 163:33–42
    [Google Scholar]
  69. Williams G. V., Rohel D. Z., Kuzio J., Faulkner P. 1989; A cytopathological investigation of Autographa californica nuclear poly- hedrosis virus p10 gene function using insertion/deletion mutants. Journal of General Virology 70:187–202
    [Google Scholar]
  70. Wilson M. E., Mainprize T. H., Friesen P. D., Miller L. K. 1987; Location, transcription, and sequence of a baculovirus gene encoding a small arginine-rich polypeptide. Journal of Virology 61:661–666
    [Google Scholar]
  71. Wolgamot G. M., Gross C. H., Russell R. L. Q., Rohrmann G. F. 1993; Immunocytochemical characterization of p24, a baculovirus capsid-associated protein. Journal of General Virology 74:103–107
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-12-3091
Loading
/content/journal/jgv/10.1099/0022-1317-78-12-3091
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error