1887

Abstract

In previous studies, we demonstrated that the substitution of amino acid triplets for alanines in the carboxy-terminal portion (amino acids 341–352: ATL EEM MTA CQC) of the capsid protein domain (p24) of human immunodeficiency virus type 1 (HIV- 1) partly led to an inhibitory effect on the capacity to form virus-like particles (VLPs). In these experiments, the uncleaved Pr55 precursor protein was expressed by recombinant vaccinia viruses. We have now investigated the effects of these mutations with respect to a replication-competent HI-provirus system. substitution of amino acids 344–346 (EEM) for alanines, which was previously shown to lead to an inhibition of VLP formation, completely blocked assembly and release of HIV. A substantial reduction of HIV synthesis was also observed in the proviral system after exchange of amino acids 347–348 [MT(A)] which, in contrast, was formerly shown to result in an increased formation of VLPs. Western blot analysis of lysates of cells transfected with these mutated proviral constructs revealed an abnormal intracellular processing pattern of the Pr55 precursor molecules. Further analyses suggest a structural aberration of these altered polyproteins as the basis for the observed block of virus formation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-10-2489
1997-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/10/9349469.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-10-2489&mimeType=html&fmt=ahah

References

  1. Bukrinskaya A. G., Vorkunova G. K., Tentsov Y. Y. 1992; HIV-1 matrix protein p17 resides in cell nuclei in association with genomic RNA. AIDS Research and Human Retroviruses 8:1795–1801
    [Google Scholar]
  2. Bukrinsky M., Haggerty S., Dempsey M. P., Sharova N., Adzhubel A., Spitz L., Lewis P., Goldfarb D., Emerman M., Stevenson M. 1993; A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365:666–669
    [Google Scholar]
  3. Delchambre M., Gheysen D., Thines D., Thiriart C., Jacobs E., Verdin E., Horth M., Burny A., Bex F. 1989; The Gag precursor of simian immunodeficiency virus assembles into virus-like particles. EMBO Journal 8:2653–2660
    [Google Scholar]
  4. Dorfman T., Mammano F., Haseltine W. A., Göttlinger H. G. 1994a; Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. Journal of Virology 68:1689–1696
    [Google Scholar]
  5. Dorfman T., Bukovsky A., Öhagen A., Höglund S., Göttlinger H. 1994b; Functional domains of the capsid protein of human immunodeficiency virus type 1. Journal of Virology 68:8180–8187
    [Google Scholar]
  6. Ehrlich L. S., Agresta B. E., Carter C. A. 1992; Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro. Journal of Virology 66:4874–4883
    [Google Scholar]
  7. Fäcke M., Janetzko A., Shoeman R. L., Kräusslich H. G. 1993; A large deletion in the matrix domain of the human immunodeficiency virus gag gene redirects virus particle assembly from the plasma membrane to the endoplasmic reticulum. Journal of Virology 67:4972–4980
    [Google Scholar]
  8. Freed E. O., Orenstein J. M., Buckler-White A. J., Martin M. A. 1994; Singl e amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. Journal of Virology 68:5311–5320
    [Google Scholar]
  9. Gelderblom H. R. 1991; Assembly andmorphology ofHIV: potential effect of structure on viral function. AIDS 5:617–638
    [Google Scholar]
  10. Gitti R. K., Lee B. M., Walker J., Summers M. F., Yoo S., Sundquist W. I. 1996; Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273:231–235
    [Google Scholar]
  11. Goddard C., Aquino A., Glazer R. I., Felsted R. L. 1989; Chemical characterization of p14gag from human immunodeficiency virus as an N- terminally myristoylated protein. European Journal of Biochemistry 182:323–326
    [Google Scholar]
  12. Göttlinger H. G., Sodroski J. G., Haseltine W. A. 1989; Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences USA: 865781–5785
    [Google Scholar]
  13. Haffar O., Garrigues J., Travis B., Moran P., Zarling J., Hu S.-L. 1990; Human immunodeficiency virus-like, nonreplicating gag-env particles assemble in a recombinant vaccinia virus expression system. Journal of Virology 64:2653–2659
    [Google Scholar]
  14. Hansen M., Jelinek L., Whiting S., Barklis E. 1990; Transport and assembly of gag proteins into Moloney murine leukemia virus. Journal of Virology 64:5306–5316
    [Google Scholar]
  15. Hong S. S., Boulanger P. 1993; Assembly-defective point mutants of the immunodeficiency virus type 1 Gag precursor phenotypically expressed in recombinant baculovirus-infected cells. Journal of Virology 67:2787–2798
    [Google Scholar]
  16. Kaplan A. H., Swanstrom R. 1991; The HIV-1 gag precursor is processed via two pathways : implications for cytotoxicity. Biomedica Biochimica Acta 50:647–653
    [Google Scholar]
  17. Kattenbeck B., Rohrhofer A., Niedrig M., Wolf H., Modrow S. 1996; Defined amino acids in the gag proteins of Human Immunodeficiency Virus Type 1 are functionally active during virus assembly. Intervirology 39:32–39
    [Google Scholar]
  18. Momany C., Kovarl L. C., Prongay A. J., Keller W., Gitti R. K., Lee B. M., Gorbalenya A. E., Tong L., McClure J., Ehrlich L. S., Summers M. F., Carter C., Rossmann M. G. 1996; Crystal structure of dimeric HIV-1 capsid protein. Nature Structural Biology 3:763–770
    [Google Scholar]
  19. Morikawa Y., Kishi T., Zhang W. H., Nermut M. V., Hockley D. J., Jones J. M. 1995; A molecular determinant of human immunodeficiency virus particle assembly located in matrix antigen p17. Journal of Virology 69:4519–4523
    [Google Scholar]
  20. Niedrig M., Gelderblom H. R., Pauli G., März J., Bickhard H., Wolf H., Modrow S. 1994; Inhibition of infectious human immunodeficiency virus type 1 particle formation by Gag protein-derived peptides. Journal of General Virology 75:1469–1474
    [Google Scholar]
  21. Overton H. A., Fuji Y., Price I. R., Jones I. M. 1989; The protease and gag gene products of the human immunodeficiency virus : authentic cleavage and post-translational modification in an insect cell expression system. Virology 170:107–116
    [Google Scholar]
  22. Pal R., Reitz M. S., Tschachler E., Gallo R. C., Sarngadharan M. G., Veronese F. D. M. 1990; Myristoylation of gag polyproteins of HIV- 1 plays an important role in virus assembly. AIDS Research and Human Retroviruses 6:721–730
    [Google Scholar]
  23. Ratner L., Fisher A., Jagodzinski L. L., Mitsuya H., Liou R.-S., Gallo R. C., Wong-Staal F. 1987; Complete nucleotide sequence of functional clonesoftheAIDS virus. AIDS Research and Human Retroviruses 3:57–68
    [Google Scholar]
  24. Reicin A., Paik S., Berkowitz R. D., Luban J., Lowy I., Goff S. P. 1995; Linker insertion mutations in the human immunodeficiency virus type 1 gag gene : effects on virion particle assembly, release and infectivity. Journal of Virology 69:642–650
    [Google Scholar]
  25. Royer M., Cerutti M., Gay B., Hong S. S., Boulanger P. 1992; Expression and cellular release of human immunodeficiency virus type 1 Gag precursors by recombinant baculovirus-infected cells. Journal of Virology 66:3230–3235
    [Google Scholar]
  26. Schätzl H., Gelderblom H. R., Nitschko H., von der Helm K. 1991; Analysis of non-infectious HIV particles produced in presence of HIV proteinase inhibitor. Archives of Virology 120:71–81
    [Google Scholar]
  27. Shioda T., Shibuta H. 1990; Production of human immunodeficiency virus (HlV)-like particles from cells infected with recombinant vaccinia viruses carrying the gag gene of HIV. Virology 175:139–148
    [Google Scholar]
  28. Spearman P., Wang J.-J., van der Heyden N., Ratner L. 1994; Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly. Journal of Virology 68:3233–3242
    [Google Scholar]
  29. Veronese F. D. M., Copeland T. D., Orsoszlan S., Gallo R., Sarngadharan M. G. 1988; Biochemical and immunological analysis of human immunodeficiency gag gene products p17 and p24. Journal of Virology 62:795–801
    [Google Scholar]
  30. von Poblotzki A., Wagner R., Niedrig M., Wanner G., Wolf H., Modrow S. 1993; Identification of a region in the Pr55gag polyprotein essential for HIV-1 particle formation. Virology 193:981–985
    [Google Scholar]
  31. Wagner R., Fließbach H., Wanner G., Motz M., Niedrig M., Deby G., von Brunn A., Wolf H. 1992; Studies on processing, particle formation and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine. Archives ofVirology 127:117–137
    [Google Scholar]
  32. Wang C. T., Barklis E. 1993; Assembly, processing and infectivity of human immunodeficiency virus type 1 Gag mutants. Journal of Virology 67:4264–4273
    [Google Scholar]
  33. Wang C. T., Zhang Y., McDermott J., Barklis E. 1993; infectivity of a human immunodeficiency virus matrix domain deletion mutant. Journal of Virology 67:7067–7076
    [Google Scholar]
  34. Wills J. W., Craven R. C. 1991; Form, function and use of retroviral gag proteins. AIDS 5:639–654
    [Google Scholar]
  35. Wolf H., Modrow S., Soutschek E., Motz M., Grunow R., Döbl H., von Baehr R. 1990; Herstellung, Kartierung und biologische Charakterisierung von monokonalen Antikorpern gegen das Core Protein (p24) des Humanen Immundefizienz Virus. AIDS Forschung 1:16–18
    [Google Scholar]
  36. Yu X., Yuan X., Matsuda Z., Lee T.-H., Essex M. 1992a; The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. Journal of Virology 66:4966–4971
    [Google Scholar]
  37. Yu X., Yu Q.-C., Lee T.-H., Essex M. 1992b; The C-terminus of human immunodeficiency virus type 1 matrix protein is involved in early steps of the virus life cycle. Journal of Virology 66:5667–5670
    [Google Scholar]
  38. Yuan X., Yu X. F., Lee T. H., Essex M. 1993; Mutations in the N- terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. Journal of Virology 67:6387–6394
    [Google Scholar]
  39. Zhou W., Parent L. J., Wills J. W., Resh M. D. 1994; Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. Journal of Virology 68:2556–2569
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-10-2489
Loading
/content/journal/jgv/10.1099/0022-1317-78-10-2489
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error