Experimental inoculation of sheep with bovine leukaemia virus (BLV), a retrovirus homologous to the human T-lymphotropic virus type 1 (HTLV-1), induces a chronic expansion of the B lymphocyte population (persistent lymphocytosis) and the development of a B cell leukaemia/lymphosarcoma syndrome. To gain insight into the mechanisms of BLV-induced lymphocytosis, we tested B cell survival capacity and cycling activity in peripheral blood mononuclear cells (PBMCs) from lymphocytotic, asymptomatic and control sheep. Interestingly, B cells from lymphocytotic sheep presented a lower level of spontaneous apoptosis (29%) in ex vivo cultures compared to that obtained with infected asymptomatic (42%) and control (57%/o) sheep PBMCs. Virus capsid (CA) synthesis was mainly found among surviving B cells and the percentage of CA-producing B cells correlated with the extent of B cell survival, indicating that BLV replication in B lymphocytes may promote protection from cell death. B cell survival was not linked with increases in expression of Bcl-2 mRNA or membrane leukosialin (CD43), although both are documented to be involved in some aspects of the B cell life-span. Finally, cell cycle analyses in freshly isolated PBMCs from lymphocytotic sheep revealed a slightly increased proportion of B cells in S phase compared to controls. Altogether, these data suggest that both BLV-induced B cell proliferation and extended survival are involved in the lymphocytotic stage encountered in BLV infection in sheep.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error