1887

Abstract

The receptor proteins, MHVR1 (Bgp C or splice variant of mmCGM1 containing two ectodomains) and MHVR2 (mmCGM2) have been reported to be functional receptors for MHV, although there was a significant difference in their virus-binding activity as determined by virus overlay protein blot assay (VOPBA). To compare the receptor function of these proteins, their virus-binding capacities were tested by using soluble forms of the proteins which lacked the transmembrane and intracytoplasmic domains. To estimate the amounts of these proteins expressed, an epitope of influenza HA protein, for which specific monoclonal antibody was available, was used as a tag. Recombinant soluble MHVR1 and MHVR2, expressed in RK 13 cells using recombinant vaccinia virus were secreted into the culture fluids of infected cells expressing these proteins. The inhibitory effect on virus infectivity of MHVR1 was shown to be about 500-fold higher than that of MHVR2. A similar disparity was observed in virus binding by VOPBA. These two proteins worked as functional receptors when they were expressed on resistant BHK-21 cells. However, the efficiency of MHV infection in BHK-21 cells expressing MHVR1 was about 30-fold higher, as compared with those expressing MHVR2. These data show that the receptor function of MHVR1 was significantly higher than that of MHVR2 and suggests that the difference in susceptibility between SJL and BALB/c mice might be due to the specific receptor protein expressed in those animals.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-8-1683
1996-08-01
2024-11-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/8/JV0770081683.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-8-1683&mimeType=html&fmt=ahah

References

  1. Boyle J. F., Weismiller D. G., Holmes K. V. 1987; Genetic difference to mouse hepatitis virus correlates with absence of virusbinding activity on target tissues. ]ournal of Virology 61:185–189
    [Google Scholar]
  2. Cavanagh D. 1995; The coronavirus surface glycoprotein. In Coronaviridae pp 73–113 Edited by Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  3. Clapham P. R., Weber J. N., Whitby D., McIntosh K., Dalgleish A. G., Maddon P. J., Deen K. C., Sweet R. W., Weiss R. A. 1989; Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature 337:368–370
    [Google Scholar]
  4. De Groot R. J., Luytjes W., Horzinek M. C., Van Der Zeijst B. A. M., Spaan W. J. M., Lenstra J. A. 1987; Evidence for a coiled-coil structure in the spike of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  5. Delmas B., Gelfi J., Haridon R. L., Vogel L. K., Sjostrom H., Noren O., Laude H. 1992; Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–420
    [Google Scholar]
  6. Duke C. S., Yu Y., Rivadeneira E. D., Sauls D. L., Liao H., Haynes B. F., Weinberg J. B. 1995; Cellular CD44S as a determinant of human immunodeficiency virus type 1 infection and cellular tropism. Journal of Virology 69:4000–4005
    [Google Scholar]
  7. Dupuy J. M., Levy-Leblond E., Leprovost C. 1975; Immunopathology of mouse hepatitis virus type 3 infection. II. Effect of immunosuppression in resistant mice. Journal of Immunology 114:226–230
    [Google Scholar]
  8. Dveksler G. S., Pensiero M. N., Cardellichio C. B., Williams R. K., Jiang G., Holmes K. V., Diffenbach C. W. 1991; Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. Journal of Virology 65:6881–6891
    [Google Scholar]
  9. Dveksler G. S., Diffenbach C. W., Cardellichio C. B., McCuaig K., Pensiero M. N., Jiang G. S., Beauchemin N., Holmes K. V. 1993a; Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. Journal of Virology 67:1–8
    [Google Scholar]
  10. Dveksler G. S., Pensiero M. N., Diffenbach C. W., Cardellichio C. B., Basile A. A., Elia P. E., Holmes K. V. 1993b; Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proceedings of the National Academy of Sciences, USA 90:1716–1720
    [Google Scholar]
  11. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  12. Fuerst T. R., Earl P. L., Moss B. 1987; Use of hybrid vaccinia virus-T7 RNA polymerase system for the expression of target genes. Molecular and Cellular Biology 7:2538–2544
    [Google Scholar]
  13. Gallagher T., Buchmeier M. J., Perlman S. 1992; Cell-receptor independent infection by a neurotropic murine coronavirus. Virology 191:517–522
    [Google Scholar]
  14. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. F., McClelland A. 1989; The major human rhinovirus receptor is ICAM-1. Cell 56:839–843
    [Google Scholar]
  15. Harouse J. M., Bhat S., Spitlnik S. L., Laughlin M., Stefano K., Silberger D. H., Gonzalez-Scarano F. 1991; Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253:320–323
    [Google Scholar]
  16. Kim J. W., Closs E. I., Albritton L. M., Cunningham J. M. C. 1991; Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352:725–728
    [Google Scholar]
  17. Knobler R. L., Haspel M. V., Oldstone M. B. A. 1981; Mouse hepatitis virus type 4 (JHM strain)-induced fatal central nervous system disease. I. Genetic control and the murine neuron as the susceptible site of disease. Journal of Experimental Medicine 153:832–843
    [Google Scholar]
  18. Knobler R. L., Tunison L. A., Lampert P. W., Oldstone M. B. A. 1982; Selected mutants of mouse hepatitis virus type 4 (JHM strain) induce different CNS diseases. Pathobiology of disease induced by wild type and mutant ts8 and tsl5 in BALB/c and SJL/J mice. American Journal of Pathology 109:157–168
    [Google Scholar]
  19. Koike S., Ise I., Nomoto A. 1991; Functional domains of the poliovirus receptor. Proceedings of the National Academy of Sciences, USA 88:4104–4108
    [Google Scholar]
  20. Kubo H., Takase S. Y., Taguchi F. 1993; Neutralization and fusion inhibition activities of monoclonal antibodies specific for the Si subunit of the spike protein of neurovirulent murine coronavirus JHMV cl-2 variant. Journal of General Virology 74:1421–1425
    [Google Scholar]
  21. Kubo H., Yamada Y. K., Taguchi F. 1994; Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. Journal of Virology 68:5403–5410
    [Google Scholar]
  22. Landau N. R., Warton M., Liftman D. R. 1988; The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature 334:159–162
    [Google Scholar]
  23. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. 1986; The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348
    [Google Scholar]
  24. Mansour S. L., Thomas K. R., Capecchi M. R. 1988; Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352
    [Google Scholar]
  25. McCuaig K., Rosenberg M., Nedellec P., Turbide C., Beauchemin N. 1993; Expression of the Bgp gene and characterization of mouse colon biliary glycoprotein isoforms. Gene 127:173–183
    [Google Scholar]
  26. McCuaig K., Turbide C., Beauchemin N. 1992; mmCGM1a: a mouse carcinoembryonic antigen gene family member, generated by alternative splicing, functions as an adhesion molecule. Cell Growth and Differentiation 3:165–174
    [Google Scholar]
  27. Mendelsohn C. L., Wimmer E., Racaniello V. R. 1989; Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865
    [Google Scholar]
  28. Nedellec P., Dveksler G. S., Daniels E., Turbide C., Chow B., Basile A. A., Holmes K. V., Beauchemin N. 1994; Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis virus. Journal of Virology 68:4525–4537
    [Google Scholar]
  29. Peterson A., Seed B. 1988; Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54:65–72
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  31. Selinka H. C., Zibert A., Wimmer E. 1991; Poliovirus can enter and infect mammalian cells by way of an intercellular adhesion molecule 1 pathway. Proceedings of the National Academy of Sciences, USA 88:3598–3602
    [Google Scholar]
  32. Siddell S. G. 1995; The Coronaviridae, an introduction. In Coronaoiridae pp 1–10 Edited by Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  33. Smith M. S., Click R. E., Plagemann P. G. W. 1984; Control of mouse hepatitis virus replication in macrophages by a recessive gene on chromosome 7. Journal of Immunology 133:428–432
    [Google Scholar]
  34. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  35. Stanners C. P., Demarte L., Rojas M., Fuks A. 1995; Opposite functions for two classes of genes of the human carcinoembryonic antigen family. Tumor Biology 16:23–31
    [Google Scholar]
  36. Staunton D. E., Dustin M. L., Erickson H. P., Springer T. A. 1990; The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61:243–254
    [Google Scholar]
  37. Staunton D. E., Meriuzzi V. J., Rothlein R., Barton R., Marlin S. D., Springer T. A. 1989; A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853
    [Google Scholar]
  38. Stohlman S. A., Frelinger J. A. 1978; Resistance to fatal central nervous system disease by mouse hepatitis virus, strain JHM. 1. Genetic analysis. Immunogenetics 6:277–281
    [Google Scholar]
  39. Taguchi F. 1993; Fusion formation by uncleaved spike protein of murine coronavirus JHMV variant cl-2. Journal of Virology 67:1195–1202
    [Google Scholar]
  40. Taguchi F. 1995; The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding. Journal of Virology 69:7260–7263
    [Google Scholar]
  41. Taguchi F., Fleming J. O. 1989; Comparison of six different murine coronavirus JHM variants by monoclonal antibodies against the E2 glycoprotein. Virology 169:233–235
    [Google Scholar]
  42. Taguchi F., Yamada A., Fujiwara K. 1980; Resistance to highly virulent mouse hepatitis virus acquired by mice after low-virulence infection: enhanced antiviral activity of macrophages. Infection and Immunity 29:42–49
    [Google Scholar]
  43. Taguchi F., Siddell S. G., Wege H., ter Meulen V. 1985; Characterization of a variant virus selected in rat brain after infection by coronavirus mouse hepatitis virus JHM. Journal of Virology 54:429–435
    [Google Scholar]
  44. Teixeira A. M., Fawcett J., Simmons D. L., Watt S. M. 1994; The N-domain of the biliary glycoprotein (BGP) adhesion molecule mediates homotypic binding: domain interactions and epitope analysis of BGPc. Blood 84:211–219
    [Google Scholar]
  45. Turbide C., Rojas M., Stanners C. P., Beauchemin N. 1992; A mouse carcinoembryonic antigen gene family member is a calcium-dependent cell adhesion molecule. Journal of Biological Chemistry 266:309–315
    [Google Scholar]
  46. Ubol S., Griffin E. 1991; Identification of a putative alphavirus receptor on mouse neural cells. Journal of Virology 65:6913–6921
    [Google Scholar]
  47. Wang H., Kavanaugh M. P., North R. A., Kabat D. 1991; Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 352:729–731
    [Google Scholar]
  48. Wang K. S., Schmaljohn A. L., Kuhn R. J., Strauss J. H. 1991; Anti-idiotypic antibodies as probes for the Sindbis virus receptor. Virology 181:694–702
    [Google Scholar]
  49. Williams R. K., Jiang G. S., Holmes K. V. 1991; Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proceedings of the National Academy of Sciences, USA 88:5533–5536
    [Google Scholar]
  50. Williams R. K., Jiang G., Synder S. W., Frana M. F., Holmes K. V. 1990; Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a nonfunctional, homologous protein in MHV-resistant SJL/J mice. Journal of Virology 64:3817–3823
    [Google Scholar]
  51. Yamada Y. K., Abe M., Yamada A., Taguchi F. 1993; Detection of mouse hepatitis virus by the polymerase chain reaction and its application to the rapid diagnosis of infection. Laboratory Animal Science 43:285–290
    [Google Scholar]
  52. Yeager C. L., Ashmun R. A., Williams R. K., Cardellichio C. B., Shapiro L. H., Look A. T., Holmes K. V. 1992; Human amino-peptidase N is a receptor for human coronavirus 229e. Nature 357:420–422
    [Google Scholar]
  53. Yokomori K., Lai M. M. C. 1992a; Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. Journal of Virology 66:6194–6199
    [Google Scholar]
  54. Yokomori K., Lai M. M. C. 1992b; The receptor for mouse hepatitis virus in the resistant mouse strain SJL is functional: implications for the requirement of a second factor for viral infection. Journal of Virology 66:6931–6938
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-77-8-1683
Loading
/content/journal/jgv/10.1099/0022-1317-77-8-1683
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error