1887

Abstract

Feline immunodeficiency virus (FIV) causes a slowly progressive multiorgan disease in infected cats and shows considerable pathogenic similarities to the human immuno-deficiency virus type 1 (HIV-1), the causative agent of AIDS (Miyazawa & Mikami, 1993; Pedersen ., 1987; Yamamoto ., 1988). It is therefore considered a useful small-animal model for HIV-1-induced AIDS studies. FIV belongs to the family , a group of small, enveloped positive-strand RNA viruses. These viruses have an enzyme, reverse transcriptase, which enables them to replicate their RNA genome through a DNA intermediate (Coffin, 1992). FIV is a member of the genus and is closely related in biological characteristics and genome organization to other mammalian lentiviruses, including HIV, simian immunodeficiency virus (SIV), bovine immunodeficiency-like virus (BIV), equine infectious anaemia virus (EIAV), visna virus and caprine arthritis-encephalitis virus (CAEV) (Narayan & Clements, 1990).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-8-1611
1996-08-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/8/JV0770081611.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-8-1611&mimeType=html&fmt=ahah

References

  1. Arens M., Joseph T., Nag S., Miller J. P., Powderly W. G., Ratner L. 1993; Alterations in spliced and unspliced HIV-1-specific RNA detection in peripheral blood mononuclear cells of individuals with varying CD4-positive lymphocyte counts. AIDS Research and Human Retroviruses 9:1257–1263
    [Google Scholar]
  2. Audoly G., Sauze N., Harkiss G., Vitu C., Russo P., Querat G., Suzan M., Vigne R. 1992; Identification and subcellular localization of the Q gene product of visna virus. Virology 189:734–739
    [Google Scholar]
  3. Barry P. A., Pratt-Lowe E., Unger R. E., Luciw P. A. 1991; Cellular factors regulate transactivation of human immunodeficiency virus type 1. Journal of Virology 65:1392–1399
    [Google Scholar]
  4. Bogerd H. P., Fridell R. A., Madore S., Cullen B. R. 1995; Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82:485–494
    [Google Scholar]
  5. Blanc D., Patience C., Schulz T. F., Weiss R., Spire B. 1993; Transcomplementation of VIF HIV-1 mutants in CEM cells suggests that VIF affects late steps of the viral life cycle. Virology 193:186–192
    [Google Scholar]
  6. Carpenter S., Nadin-Davis S. A., Wannemuehler Y., Roth J. A. 1993; Identification of transactivation-response sequence in the long terminal repeat of bovine immunodeficiency-like virus. Journal of Virology 67:4399–4403
    [Google Scholar]
  7. Carroll R., Derse D. 1993; Translation of equine infectious anemia virus bicistronic tat-rev mRNA requires leaky ribosome scanning of the tat CTG initiation codon. Journal of Virology 67:1433–1440
    [Google Scholar]
  8. Carroll R., Martarano L., Derse D. 1991; Identification of lentivirus tat functional domains through generation of equine infectious anemia virus/human immunodeficiency virus type 1 tat gene chimeras. Journal of Virology 65:3460–3467
    [Google Scholar]
  9. Carruth L. M., Hardwick J. M., Morse B. A., Clements J. E. 1994; Visna virus Tat protein: a potent transcription factor with both activator and suppresser domains. Journal of Virology 68:6137–6146
    [Google Scholar]
  10. Carvalho M., Derse D. 1991; Mutational analysis of the equine infectious anemia virus tat-response element. Journal of Virology 65:3468–3474
    [Google Scholar]
  11. Chakrabarti L., Guyader M., Alizon M., Daniel M. D., Desrosiers R. C., Tiollais P., Sonigo P. 1987; Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature 328:543–547
    [Google Scholar]
  12. Clements J. E., Wong-Staal F. 1992; Molecular biology of lentiviruses. Seminars in Virology 3:137–146
    [Google Scholar]
  13. Coffin J. M. 1992; Structure and classification of Retroviruses. In The Retroviridae pp 19–50 Edited by Levy J. A. New York: Plenum Press;
    [Google Scholar]
  14. Cullen B. R. 1986; Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46:973–982
    [Google Scholar]
  15. Cullen B. R. 1991; Human immunodeficiency virus as a prototypic complex retrovirus. Journal of Virology 65:1053–1056
    [Google Scholar]
  16. Cullen B. R., Hauber J., Campbell K., Sodroski J. G., Haseltine W. A., Rosen C. A. 1988; Subcellular localization of the human immunodeficiency virus trans- acting art gene product. Journal of Virology 62:2498–2501
    [Google Scholar]
  17. Davis J. L., Clements J. E. 1988; Characterization of cDNA clone encoding the visna virus transactivating protein. Proceedings of the National Academy of Sciences, USA 86:414–418
    [Google Scholar]
  18. Davis J. L., Molineaux S., Clements J. E. 1987; Visna virus exhibits a complex transcriptional pattern: one aspect of gene expression shared with the acquired immunodeficiency syndrome retrovirus. Journal of Virology 61:1325–1331
    [Google Scholar]
  19. Dayton E. T., Konings D. A. M., Lim S. Y., Hsu R. K. S., Buyini L., Pantaleo G., Dayton A. I. 1993; The RRE of human immunodeficiency virus type 1 contributes to cell-type-specific viral tropism. Journal of Virology 67:2871–2878
    [Google Scholar]
  20. Derse D., Carvalho M., Carroll R., Peterlin B. M. 1991; A minimal lentivirus Tat. Journal of Virology 65:7012–7015
    [Google Scholar]
  21. Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A., Valerio R. 1989; Human immunodeficiency virus 1 Tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proceedings of the National Academy of Sciences, USA 86:6925–6929
    [Google Scholar]
  22. Dorn P. L., Derse D. 1988; cis- and trans-acting regulation of gene expression of gene expression of equine infectious anemia virus. Journal of Virology 62:3522–3526
    [Google Scholar]
  23. Dorn P. L., Dasilva L., Martarano L., Derse D. 1990; Equine infectious anemia virus tat: insights into the structure, function, and evolution of lentivirus frans-activator protein. Journal of Virology 64:1616–1624
    [Google Scholar]
  24. Fan L., Peden K. 1992; Cell-free transmission of Vif mutants of HIV-1. Virology 190:19–29
    [Google Scholar]
  25. Feinberg M. B., Jarrett R. F., Aldovini A., Gallo R. C., Wong-Staal F. 1986; HTLV-III expression and production involves complex regulation at the levels of splicing and translation of viral RNA. Cell 46:807–817
    [Google Scholar]
  26. Feng S., Holland E. C. 1988; HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334:165–167
    [Google Scholar]
  27. Felber B. K., Pavlakis G. N. 1993; Molecular biology of HIV-I: positive and negative regulatory elements important for virus expression. AIDS 7:S51–S62
    [Google Scholar]
  28. Felber B. K., Hadzopoulou-Cladaras M., Cladalaras C., Copeland T., Pavlakis G. N. 1989; Rev protein of human immunodeficiency vims type 1 affects the stability and transport of the viral mRNA. Proceedings of the National Academy of Sciences, USA 86:1495–1499
    [Google Scholar]
  29. Fischer U., Huber J., Boeiens W. C., Mattaj I. W., Luhrmann R. 1995; The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483
    [Google Scholar]
  30. Fisher A. G., Ensoli B., Ivanoff L., Chamberlain M., Petteway S., Patner L., Gallo R. C., Wong-Staal F. 1987; The sor gene of HIV- 1 is required for efficient vims transmission in vitro. Science 237:888–893
    [Google Scholar]
  31. Fridell R. A., Partin K. M., Carpenter S., Cullen B. R. 1993; Identification of the activation domain of equine infectious anemia vims Rev. Journal of Virology 67:7317–7323
    [Google Scholar]
  32. Fukasawa M., Miura T., Hasegawa A., Morikawa S., Tsujimoto H., Miki K., Kitamura T., Hayami M. 1988; Sequence of simian immunodeficiency virus from African green monkey, a new member of the HIV/SIV group. Nature 333:457–461
    [Google Scholar]
  33. Gabuzda D. H., Hess J. L., Small J. A., Clements J. E. 1989; Regulation of the visna virus long terminal repeat in macrophages involves cellular factors that bind sequences containing AP-1 sites. Molecular and Cellular Biology 9:2728–2733
    [Google Scholar]
  34. Gabuzda D. H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W. A., Sodroski J. 1992; Role of vif in replication of human immunodeficiency vims type 1 CD4+ T lymphocytes. Journal of Virology 66:6489–6495
    [Google Scholar]
  35. Garcia J. A., Harrich D., Pearson L., Mitsuyasu R., Gaynor R. B. 1988; Functional domains required for tat- induced transcriptional activation of the HIV-1 long terminal repeat. EMBO Journal 7:3143–3147
    [Google Scholar]
  36. Garcia J. A., Harrich D., Soultanakis E., Wu F., Mitsuyasu R., Gaynor R. B. 1989; Human immunodeficiency vims type 1: LTR TATA and TAR region sequences required for transcriptional regulation. EMBO Journal 8:765–778
    [Google Scholar]
  37. Garcia-Bianco M. A., Cullen B. R. 1991; Molecular basis of latency in pathogenic human viruses. Science 254:815–820
    [Google Scholar]
  38. Garrett E. D., Tiley L. S., Cullen B. R. 1991; Rev activates expression of the human immunodeficiency vims type 1 vif and vpr gene products. Journal of Virology 65:1653–1657
    [Google Scholar]
  39. Garvey K. J., Oberste M. S., Elser J. E., Braun M. J., Gonda M. A. 1990; Nucleotide sequence and genome organization of biologically active proviruses of the bovine immunodeficiency-like vims. Virology 175:391–409
    [Google Scholar]
  40. Gdovin S. L., Clements J. E. 1992; Molecular mechanisms of visna virus tat: identification of the targets for transcriptional activation and evidence for a post-transcriptional effect. Virology 188:438–450
    [Google Scholar]
  41. Goncalves J., Jallepalli P., Gabuzda D. H. 1994; Subcellular localization of the Vif protein of human immunodeficiency vims type 1. Journal of Virology 68:704–712
    [Google Scholar]
  42. Gonda M. A., Oberste M. S. 1992 AIDS – the human immunodeficiency virus: molecular and stmctural aspects of its biology. In Control of Virus Diseases pp 3–31 Edited by Kurstak E. New York: Marcel Dekker;
    [Google Scholar]
  43. Gupta P., Kingsley L., Armstrong J., Ding M., Cottrill M., Rinaldo C. 1993; Enhanced expression of human immunodeficiency vims type 1 correlates with development of AIDS. Virology 196:586–595
    [Google Scholar]
  44. Guyader M., Emmerman M., Sonigo P., Clavel F., Montagnier L., Alizon M. 1987; Genome organization and transactivation of the human immunodeficiency vims type 2. Nature 326:662–669
    [Google Scholar]
  45. Harmache A., Bouyac M., Audoly G., Hieblot C., Peveri P., Vigne R., Suzan M. 1995a; The vif gene is essential lor efficient replication of caprine arthritis encephalitis vims in goat synovial membrane cells and affects the late steps of the vims replication cycle. Journal of Virology 69:3247–3257
    [Google Scholar]
  46. Harmache A., Vitu C., Russo P., Bouyac M., Hieblot C., Peveri P., Vigne R., Suzan M. 1995b; The caprine arthritis encephalitis vims tat gene is dispensable for efficient viral replication in vitro and in vivo. Journal of Virology 69:5445–5454
    [Google Scholar]
  47. Hauber J., Cullen B. R. 1988; Mutational analysis of the transactivation responsive region of the human immunodeficiency vims 1 long terminal repeat. Journal of Virology 62:673–679
    [Google Scholar]
  48. Hauber J., Perkins A., Heimer E. P., Cullen B. R. 1987; Transactivation of human immunodeficiency virus gene expression is mediated by nuclear events. Proceedings of the National Academy of Sciences, USA 84:6364–6368
    [Google Scholar]
  49. Hess J. L., Pyper J. M., Clements J. E. 1986; Nucleotide sequence and transcriptional activity of the caprine arthritis-encephalitis virus long terminal repeat. Journal of Virology 60:385–393
    [Google Scholar]
  50. Jakobovits A., Smith D. H., Jakobovits E. B., Capon D. J. 1988; A discrete element 3′ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator. Molecular and Cellular Biology 8:2555–2561
    [Google Scholar]
  51. Kakinuma S., Motokawa K., Hohdatsu T., Yamamoto J. K., Koyama H., Hashimoto H. 1995; Nucleotide sequence of feline immunodeficiency virus: classification of Japanese isolates into two subtypes which are distinct from non-Japanese subtypes. Journal of Virology 69:3639–3646
    [Google Scholar]
  52. Karczewski M. K., Strebel K. 1996; Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. Journal of Virology 70:494–507
    [Google Scholar]
  53. Kiyomasu T., Miyazawa T., Furuya T., Shibata R., Sakai H., Sakuragi J., Fukasawa M., Maki N., Hasegawa A., Mikami T., Adachi A. 1991; Identification of the feline immunodeficiency virus rev gene activity. Journal of Virology 65:4539–4542
    [Google Scholar]
  54. Laspia M. F., Rice A. P., Mathews M. B. 1989; HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–292
    [Google Scholar]
  55. Lerner D. L., Wagaman P. C., Phillips T. R., Prospero-Garcia O., Henriksen S. J., Fox H. S., Bloom F. E., Elder J. H. 1995; Increased mutation frequency of FIV lacking functional deoxyuridine triphosphatase. Proceedings of the National Academy of Sciences, USA 92:7480–7484
    [Google Scholar]
  56. Lewis N., Williams J., Rekosh D., Hammarskojold M. -L. 1990; Identification of a cis-acting element in human immunodeficiency virus type 2 (HIV-2) that is responsive to the HIV-1 rev and human T-cell leukemia virus types I and II rex proteins. Journal of Virology 64:1690–1697
    [Google Scholar]
  57. Liu H., Wu X., Newman M., Shaw G. M., Hahn B. H., Kappes J. C. 1995; The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. Journal of Virology 69:7630–7638
    [Google Scholar]
  58. Liu Z. -Q., Sheridan D., Wood C. 1992; Identification and characterization of bovine immunodeficiency-like virus tat gene. Journal of Virology 66:5137–5140
    [Google Scholar]
  59. Maki N., Miyazawa T., Fukasawa M., Hasegawa A., Hayami M., Miki K., Mikami T. 1992; Molecular characterization and heterogeneity of feline immunodeficiency virus isolates. Archives of Virology 123:29–45
    [Google Scholar]
  60. Malim M. H., Cullen B. R. 1991; HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell 65:241–248
    [Google Scholar]
  61. Malim M. H., Cullen B. R. 1993; Rev and the pre-mRNA in nucleus: implications for the regulation of RNA processing in eukaryotes. Molecular and Cellular Biology 13:6180–6189
    [Google Scholar]
  62. Malim M. H., Bohnlein S., Fenrick R., Le S. -Y., Maizel J. V., Cullen B. R. 1989a; Functional comparison of the Rev trans-activators encoded by different primate immunodeficiency virus species. Proceedings of the National Academy of Sciences, USA 86:8222–8226
    [Google Scholar]
  63. Malim M. H., Hauber J., Le S.-Y., Maizel J. V., Cullen B. R. 1989b; The HIV-1 rev fraws-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–257
    [Google Scholar]
  64. Mancuso V. A., Hope T. J., Zhu L., Derse D., Phillips T., Parslow T. G. 1994; Posttranscriptional effector domains in the Rev proteins of feline immunodeficiency virus and equine infectious anemia virus. Journal of Virology 68:1998–2001
    [Google Scholar]
  65. Martarano L., Stephens R., Rice N., Derse D. 1994; Equine Infectious anemia virus fraus-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing. Journal of Virology 68:3102–3111
    [Google Scholar]
  66. Michaels F. H., Hattori N., Gallo R. C., Franchini G. 1993; The human immunodeficiency virus type 1 (HIV-1) Vif protein is located in the cytoplasm of infected cells and its effect on viral replication is equivalent in HIV-2. AIDS Research and Human Retroviruses 9:1025–1030
    [Google Scholar]
  67. Miller M. D., Feinberg M. B., Greene W. C. 1994; The HIV-1 nef gene acts as a positive viral infectivity factor. Trends in Microbiology 2:294–298
    [Google Scholar]
  68. Miyazawa T., Mikami T. 1993; Biological nature of feline immunodeficiency virus. Journal of Veterinary Medical Science 55:519–526
    [Google Scholar]
  69. Miyazawa T., Kohmoto M., Kawaguchi Y., Tomonaga K., Toyosaki T., Ikuta K., Adachi A., Mikami T. 1993; The AP-1 binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in feline T lymphocytes. Journal of General Virology 74:1573–1580
    [Google Scholar]
  70. Morikawa S., Lutz H., Aubert A., Bishop D. H. L. 1991; Identification of conserved and variable regions in the envelope glycoprotein sequences of two feline immunodeficiency viruses isolated in Zurich, Switzerland. Virus Research 21:53–63
    [Google Scholar]
  71. Muesing M. A., Smith D. H., Capon D. J. 1987; Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48:691–701
    [Google Scholar]
  72. Narayan O., Clements J. E. 1990; Lenti viruses. In Virology, 2nd edn. pp 1571–1589 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  73. Neuveut C., Vigne R., Clements J. E., Sire J. 1993; The visna transcriptional TAT: effects on the viral LTR and on cellular genes. Virology 197:236–244
    [Google Scholar]
  74. Noiman S., Gazit A., Tori O., Sherman L., Miki T., Tronick S. R., Yaniv A. 1990; Identification of sequences encoding the equine infectious anemia virus tat gene. Virology 176:280–288
    [Google Scholar]
  75. Noiman S., Yaniv A., Tsach T., Miki T., Tronick S. R., Gazit A. 1991; The Tat protein of equine infectious anemia virus is encoded by at least three types of transcripts. Virology 184:521–530
    [Google Scholar]
  76. Oberste M. S., Gonda M. A. 1992; Conservation of amino-acid sequence motifs in lentivirus Vif proteins. Virus Genes 6:95–102
    [Google Scholar]
  77. Oberste M. S., Greenwood J. D., Gonda M. A. 1991; Analysis of the transcription pattern and mapping of the putative rev and env splice junctions of bovine immunodeficiency-like virus. Journal of Virology 65:3932–3937
    [Google Scholar]
  78. Oberste M. S., Williamson J. C., Greenwood J. D., Nagashima K., Copeland T. D., Gonda M. A. 1993; Characterization of bovine immunodeficiency virus rev cDNAs and identification and subcellular localization of the Rev protein. Journal of Virology 67:6395–6405
    [Google Scholar]
  79. Olmsted R. A., Hirsch V. M., Purcell R. H., Johnson P. R. 1989; Nucleotide sequence analysis of feline immunodeficiency virus: genome organization and relationship to other Ientiviruses. Proceedings of the National Academy of Sciences, USA 86:8088–8092
    [Google Scholar]
  80. Olsen H. S., Cochrane A. W., Dillon P. J., Nalin C. M., Rosen C. A. 1990; Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes and Development 4:1357–1364
    [Google Scholar]
  81. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. 1987; Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793
    [Google Scholar]
  82. Peterlin B. M., Luciw P. A., Barr P. J., Walker M. D. 1986; Elevated levels of mRNA can account for the trans-activation of human immunodeficiency virus. Proceedings of the National Academy of Sciences, USA 83:9734–9738
    [Google Scholar]
  83. Phillips T. R., Talbott R. L., Lamont C., Muir S., Lovelace K., Elder J. H. 1990; Comparison of two host cell range variants of feline immunodeficiency virus. Journal of Virology 64:4605–4613
    [Google Scholar]
  84. Phillips T. R., Lamont C., Konings D. A. M., Shacklett B. L., Hamson C. A., Luciw P. A., Elder J. H. 1992; Identification of the Rev transactivation and Rev-responsive elements of feline immunodeficiency virus. Journal of Virology 66:5464–5471
    [Google Scholar]
  85. Pomerantz R. J., Trono D., Feinberg M. B., Baltimore D. 1990; Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expressions molecular model for latency. Cell 61:1271–1276
    [Google Scholar]
  86. Pomerantz R. J., Seshamma T., Trono D. 1992; Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: potential implications for latency. Journal of Virology 66:1809–1813
    [Google Scholar]
  87. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K., Ivanoff L., Petteway S. R. Jr, Pearson M. L., Lautenberger J. A., Papas T. S., Ghrayeb J., Chang N. T., Gallo R. C., Wong-Staal F. 1985; Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313:277–284
    [Google Scholar]
  88. Rice A., Matthews M. 1988; Transcription but not transcriptional regulation of HIV-1 by the tat gene product. Nature 332:551–555
    [Google Scholar]
  89. Rosen C. A., Sodroski J. G., Goh W. C., Dayton A. I., Lippke J., Haseltine W. A. 1986; Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature 319:555–559
    [Google Scholar]
  90. Rosen C. A., Terwilliger E., Dayton A., Sodroski J. G., Haseltine W. A. 1988; Intragenic cis-acting art gene-responsive sequence of the human immunodeficiency virus. Proceedings of the National Academy of Sciences, USA 85:2071–2075
    [Google Scholar]
  91. Rosin-Arbesfeld R., Riviln M., Noiman S., Mashiah P., Yaniv A., Miki T., Tronick S. R., Gazit A. 1993; Structural and functional characterization of reu-like transcripts of equine infectious anemia virus. Journal of Virology 67:5640–5646
    [Google Scholar]
  92. Sadaie M. R., Rappaport J., Benter T., Josephes S. F., Willis R., Wong-Staal F. 1988; Missense mutations in an infectious human immunodeficiency viral genome: functional mapping of tat and identification of the rev splice acceptor. Proceedings of the National Academy of Sciences, USA 85:9224–9228
    [Google Scholar]
  93. Sakai H., Shibata R., Sakuragi J.-I., Sakuragi S., Kawamura M., Adachi A. 1993; Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. Journal of Virology 67:1663–1666
    [Google Scholar]
  94. Saltarelli M., Querat G., Konings D. A. M., Vigne R., Clements J. E. 1990; Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 184:513–520
    [Google Scholar]
  95. Saltarelli M. J., Schoborg R., Gdovin S. L., Clements J. E. 1993; The CAEV tat gene fraus-activates the viral LTR and is necessary for efficient viral replication. Virology 197:35–44
    [Google Scholar]
  96. Saltarelli M. J., Schoborg R., Pavlakis G. N., Clements J. E. 1994; Identification of the caprine arthritis encephalitis virus Rev protein and its cis-acting Rev-responsive element. Virology 199:47–55
    [Google Scholar]
  97. Schnittman S. M., Greenhouse J. J., Lane H. C., Pierce P. F., Fauci A. S. 1991; Frequent detection of HIV-l-specific mRNAs in infected individuals suggested ongoing active viral expression in all stages of disease. AIDS Research and Human Retroviruses 7:361–367
    [Google Scholar]
  98. Schwartz S., Felber B. K., Benko D. M., Fenyo E.-M., Pavlakis G. N. 1990; Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. Journal of Virology 64:2519–2529
    [Google Scholar]
  99. Schwartz S., Felber B. K., Pavlakis G. N. 1991; Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is Rev- dependent and regulated by splicing. Virology 183:667–686
    [Google Scholar]
  100. Selby M. J., Bain E. S., Luciw P. A., Peterlin B. M. 1989; Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes and Development 3:547–558
    [Google Scholar]
  101. Seshamma T., Bagasra O., Trono D., Baltimore D., Pomerantz R. J. 1992; Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 89:10663–10667
    [Google Scholar]
  102. Shacklett B. L., Luciw P. A. 1994; Analysis of the vif gene of feline immunodeficiency virus. Virology 204:860–867
    [Google Scholar]
  103. Sherman L., Gazit A., Yaniv A., Kawakami T., Dahlberg J. E., Tronick S. R. 1988; Localization of sequences responsible for transactivation of the equine infectious anemia vims long terminal repeat. Journal of Virology 62:120–126
    [Google Scholar]
  104. Sherman L., Yaniv A., Lichtman-Pleban H., Tronick S. R., Gazit A. 1989; Analysis of regulatory elements of the equine infectious anemia virus and caprine arthritis-encephalitis vims long terminal repeats. Journal of Virology 63:4925–4931
    [Google Scholar]
  105. Shibata R., Miura T., Hayami M., Sakai H., Ogawa K., Kiyomasu T., Ishimoto A., Adachi A. 1990a; Construction and characterization of an infectious DNA clone and of mutants of simian immunodeficiency vims isolated from the African green monkey. Journal of Virology 64:307–312
    [Google Scholar]
  106. Shibata R., Miura T., Hayami M., Ogawa K., Sakai H., Kiyomasu T., Ishimoto A., Adachi A. 1990b; Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genome in relation to HIV-1 and simian immunodeficiency vims SIVAGM. Journal of Virology 64:742–747
    [Google Scholar]
  107. Shih D. S., Carruth L. M., Anderson M., Clements J. E. 1992; Involvement of FOS and JUN in the activation of visna vims gene expression in macrophages through an AP-1 site in the LTR. Virology 190:84–91
    [Google Scholar]
  108. Simon J. H. M., Southerling T. E., Peterson J. C., Meyer B. E., Halim M. H. 1995; Complementation of pi/-defective human immunodeficiency vims type 1 by primate, but not nonprimate, lentivirus vif genes. journal of Virology 69:4166–4172
    [Google Scholar]
  109. Small J. A., Bieberich C., Ghotbi Z., Hess J., Scangos G. A., Clements J. E. 1989; The visna vims long terminal repeat directs expression of a reporter gene in activated macrophages, lymphocytes, and the central nervous systems of transgenic mice. Journal of Virology 63:1891–1896
    [Google Scholar]
  110. Sodora D. L., Shpaer E. G., Kitchell B. E., Dow S. W., Hoover E. A., Mullins J. I. 1994; Identification of three feline immunodeficiency vims (FIV) env gene subtypes and comparison of the FIV and human immunodeficiency vims type 1 evolutionary patterns. Journal of Virology 68:2230–2238
    [Google Scholar]
  111. Sonigo P., Alizon M., Staskus K., Klazmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. 1985; Nucleotide sequence of the visna lentivirus: relationship to the AIDS vims. Cell 42:369–382
    [Google Scholar]
  112. Sova P., Volsky D. J. 1993; Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. Journal of Virology 67:6322–6326
    [Google Scholar]
  113. Sparger E. E., Shacklett B. L., Renshaw-Gegg L., Barry P. A., Pedersen N. C., Elder J. H., Luciw P. A. 1992; Regulation of gene expression directed by the long terminal repeat of the feline immunodeficiency virus. Virology 187:165–177
    [Google Scholar]
  114. Sparger E. E., Beebe A. M., Dua N., Himathongkam S., Elder J. H., Torten M., Higgins J. 1994; Infection of cats with molecularly cloned and biological isolates of the feline immunodeficiency virus. Virology 205:546–553
    [Google Scholar]
  115. Steffy K., Wong-Staal F. 1991; Genetic regulation of human immunodeficiency virus. Microbiological Reviews 55:193–205
    [Google Scholar]
  116. Stephens R. M., Derse D., Rice N. R. 1990; Cloning and characterization of cDNAs encoding equine infectious anemia Tat and putative Rev proteins. Journal of Virology 64:3716–3725
    [Google Scholar]
  117. Strebel K., Daugherty D., Clouse K., Cohen D., Folks T., Martin M. A. 1987; The HIV 'A' (Sor) gene product is essential for virus infectivity. Nature 328:728–730
    [Google Scholar]
  118. Subbramanian R. A., Cohen E. A. 1994; Molecular biology of the human immunodeficiency virus accessory proteins. Journal of Virology 68:6831–6835
    [Google Scholar]
  119. Talbott R. L., Sparger E. E., Lovelace K. M., Fitch W. M., Pedersen N. C., Luciw P. A., Elder J. H. 1989; Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proceedings of the National Academy of Sciences, USA 86:5743–5747
    [Google Scholar]
  120. Thompson F. J., Elder J., Neil J. C. 1994; Cis- and trans-regulation of feline immunodeficiency virus: identification of functional binding sites in the long terminal repeat. Journal of General Virology 75:545–554
    [Google Scholar]
  121. Tiley L. S., Cullen B. R. 1992; Structural and functional analysis of the visna virus Rev-response element. Journal of Virology 66:3609–3615
    [Google Scholar]
  122. Tiley L. S., Brown P. H., Le S. -Y., Maizel J. V., Clements J. E., Cullen B. R. 1990; Visna virus encodes a post transcriptional regulator of viral gene expression. Proceedings of the National Academy of Sciences, USA 87:10971–10975
    [Google Scholar]
  123. Tiley L. S., Malim M. H., Cullen B. R. 1991; Conserved functional organization of the human immunodeficiency virus type 1 and visna virus Rev proteins. Journal of Virology 65:3877–3881
    [Google Scholar]
  124. Tomonaga K., Mikami T. 1996; Detection of feline immunodeficiency virus transcripts by quantitative reverse transcription- polymerase chain reaction. Veterinary Microbiology 48:337–344
    [Google Scholar]
  125. Tomonaga K., Norimine J., Shin Y. -S., Fukasawa M., Miyazawa T., Adachi A., Toyosaki T., Kawaguchi Y., Kai C., Mikami T. 1992; Identification of a feline immunodeficiency virus gene which is essential for cell-free virus infectivity. Journal of Virology 66:6181–6185
    [Google Scholar]
  126. Tomonaga K., Shin Y. S., Fukasawa M., Miyazawa T., Adachi A., Mikami T. 1993a; Feline immunodeficiency virus gene expression: analysis of the RNA splicing pattern and the monocistronic rev mRNA. Journal of General Virology 74:2409–2417
    [Google Scholar]
  127. Tomonaga K., Miyazawa T., Sakuragi J.-l., Mori T., Adachi A., Mikami T. 1993b; The feline immunodeficiency virus ORF-A gene facilitates efficient viral replication in established T-cell lines and peripheral blood lymphocytes. Journal of Virology 67:5889–5895
    [Google Scholar]
  128. Tomonaga K., Miyazawa T., Kawaguchi Y., Kohmoto M., Inoshima Y., Mikami T. 1994; Comparison of the Rev transactivation of feline immunodeficiency virus in feline and non-feline cell lines. Journal of Veterinary Medical Science 56:199–201
    [Google Scholar]
  129. Tomonaga K., Inoshima Y., Ikeda Y., Mikami T. 1995; Temporal patterns of feline immunodeficiency virus transcripts in peripheral blood cells during the latent stage of infection. Journal of General Virology 76:2193–2204
    [Google Scholar]
  130. Trono D., Baltimore D. 1990; A human cell factor is essential for HIV-1 Rev action. EMBO Journal 9:4155–4160
    [Google Scholar]
  131. Vaishnav Y. N., Vaishnav M., Wong-Staal F. 1991; Identification and characterization of a nuclear factor that specifically binds to the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1). New Biologist 3:142–150
    [Google Scholar]
  132. Vellutini C., Philippon V., Gambarelli D., Horschowski N., Nave K. -A., Navarro J. M., Auphan M., Courcoul M. -A., Filippi P. 1994; The maedi-visna virus Tat protein induces multiorgan lymphoid hyperplasia in transgenic mice. Journal of Virology 68:4955–4962
    [Google Scholar]
  133. von Schwedler U., Song J., Aiken C., Trono D. 1993; vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. Journal of Virology 67:4945–4955
    [Google Scholar]
  134. Waters A. K., de Parseval A. P., Lerner D. L., Neil J. C., Thompson F. J., Elder J. H. 1996; Influence of ORF2 on host cell tropism of feline immunodeficiency virus. Virology 215:10–16
    [Google Scholar]
  135. Wright C. M., Felber B. K., Paskalis H., Pavlakis G. N. 1986; Expression and characterization of the trans-activator of HTLV-III/LAV virus. Science 234:988–992
    [Google Scholar]
  136. Yamamoto J. K., Sparger E., Ho E. W., Andersen P. R., O'Connor T. P., Mandell C. P., Lowenstine L., Munn R., Pedersen N. C. 1988; Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. American Journal of Veterinary Research 49:1246–1258
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-8-1611
Loading
/content/journal/jgv/10.1099/0022-1317-77-8-1611
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error