1887

Abstract

We have determined the nucleotide sequence of the region of the rubella virus genome which encodes amino acids 195–296 of the E1 glycoprotein (E1-195–296) from a panel of 22 rubella viruses obtained from Europe, USA and Asia between 1963–1995. E1-195–296 contains neutralizing and haemagglutinating determinants, and may represent a major antigenic domain. The nucleotide sequence divergence of the 22 rubella viruses compared to the Therien strain sequence ranged from 0.65–7.14%. The greatest sequence divergence occurred in two rubella viruses of Indian origin, and was more than twofold greater than that previously reported for rubella virus. The majority of nucleotide changes occurring in the 22 viruses did not effect the deduced amino acid sequence of E1-195–296. Two rubella viruses isolated from cases of reinfection in pregnancy did not exhibit nucleotide sequence variation resulting in changes in the deduced amino acid sequence of E1-195–296, suggesting that antigenic change within this region of E1 is not associated with rubella reinfection. A rubella virus isolated from a synovial fluid sample exhibited a nucleotide substitution in a putative neutralization domain contained within E1-195–296. Phylogenetic analysis was performed to study the relationship between E1-195–296 coding sequences of the 22 viruses in this report and corresponding sequences of other rubella viruses in the databank.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-10-2523
1996-10-01
2022-05-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/10/JV0770102523.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-10-2523&mimeType=html&fmt=ahah

References

  1. Best J. M., Banatvala J. E. 1994; Rubella. In Principles and Practice of Clinical Virology 3rd edn, pp 363–400 Edited by Zuckerman A. J., Pattison J. R. Chichester: John Wiley & Sons;
    [Google Scholar]
  2. Best J. M., Banatvala J. E., Morgan Capner P., Miller E. 1989; Fetal infection after maternal reinfection with rubella: criteria for defining reinfection. British Medical Journal 299:773–775
    [Google Scholar]
  3. Best J. M., Thomson A., Nores J. R., O’Shea S., Banatvala J. E. 1992; Rubella virus strains show no major antigenic differences. Intervirology 34:164–168
    [Google Scholar]
  4. Bosma T. J., Corbett K. M., Eckstein M. B., O’Shea S., Vijayalakshmi P., Banatvala J. E., Best J. M. 1995; Use of PCR for prenatal and postnatal diagnosis of congenital rubella. Journal of Clinical Microbiology 33:2881–2887
    [Google Scholar]
  5. Buonagurio D. A., Nakada S., Desselberger U., Krystal M., Palese P. 1985; Non cumulative sequence changes in the hemagglutinin genes of influenza C virus isolates. Virology 146:221–232
    [Google Scholar]
  6. Buonagurio D. A., Nakada S., Fitch M. W., Palese P. 1986; Epidemiology of influenza C virus in man: multiple evolutionary lineages and low rate of change. Virology 153:12–21
    [Google Scholar]
  7. Chantler J. K., Ford D. K., Tingle A. J. 1982; Persistent rubella infection and rubella associated arthritis. Lancet i:1323–1325
    [Google Scholar]
  8. Chantler J. K., Tingle A. J., Petty R. E. 1985; Persistent rubella virus infection associated with chronic arthritis in children. New England Journal of Medicine 313:1117–1123
    [Google Scholar]
  9. Chaye H., Chong P., Tripet B., Brush B., Gillam S. 1992; Localization of the virus neutralizing and hemagglutinin epitopes of E1 glycoprotein of rubella virus. Virology 189:483–492
    [Google Scholar]
  10. Clarke D. M., Loo T. W., Hui I., Chong P., Gillam S. 1987; Nucleotide sequence and in vitro expression of E1 envelope protein. Nucleic Acids Research 15:3041–3057
    [Google Scholar]
  11. Cusi M. G., Metelli R., Valensin P. E. 1989; Immune responses to wild and vaccine rubella viruses after rubella vaccination. Archives of Virology 106:63–71
    [Google Scholar]
  12. Dominguez G., Wang C. Y., Frey T. K. 1990; Sequence of the genome of rubella virus. Evidence for genetic rearrangement during togavirus evolution. Virology 177:225–238
    [Google Scholar]
  13. Felsenstein J. 1989; PHYLIP - phylogeny inference package, version 3.2.. Cladistics 5:164–166
    [Google Scholar]
  14. Felsenstein J. 1993 PHYLIP (phylogeny inference package) version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, Wash., USA.:
    [Google Scholar]
  15. Frey T. K. 1994; Molecular biology of rubella virus. Advances in Virus Research 44:69–160
    [Google Scholar]
  16. Frey T. K., Abernathy E. S. 1993; Identification of strain specific nucleotide sequences in the RA2 7/3 rubella virus vaccine. Journal of Infectious Diseases 168:854–864
    [Google Scholar]
  17. Garcia O., Martin M., Dopazo J., Arbiza J., Frabasile S., Russi J., Hortal M., Perez-Brena P., Martines I., Garcia-Barreno B., Melero J. A. 1994; Evolutionary pattern of human respiratory syncytial virus (sub group A): cocirculating lineages and correlation of genetic and antigenic changes in the G glycoprotein. Journal of Virology 68:5448–5459
    [Google Scholar]
  18. Hildebrandt M. A., Maassab H. F. 1966; Rubella synovitis in a one year old patient. New England Journal of Medicine 274:1427–1430
    [Google Scholar]
  19. Kedl R., Schmechel S., Schiff L. 1995; Comparative sequence analysis of the reovirus S4 genes from 13 serotype 1 and serotype 3 field isolates. Journal of Virology 69:552–559
    [Google Scholar]
  20. Londesborough P., Ho-Terry L., Terry G. 1995; Sequence variation and biological activity of rubella virus isolates. Archives of Virology 140:563–570
    [Google Scholar]
  21. Mitchell L. A., Zhang T., Ho M., Decarie D., Tingle A., Zrein M., Lacroix M. 1992; Characterization of rubella-specific antibody responses by using a new synthetic peptide based enzyme linked immunosorbent assay. Journal of Clinical Microbiology 30:1841–1847
    [Google Scholar]
  22. Mitchell L. A., Decarie D., Tingle A. J., Zrein M., Lacroix M. 1993; Characterization of rubella virus-specific antibody responses by using synthetic peptides. Virus Research 29:33–57
    [Google Scholar]
  23. Nakhasi H. L., Meyer B. C., Liu T. Y. 1986; Rubella virus cDNA: sequence and expression of envelope protein. Journal of Biological Chemistry 261:16616–16621
    [Google Scholar]
  24. Nakhasi H. L., Thomas D., Zheng D., Liu T. Y. 1989; Nucleotide sequence of capsid, E2 and E1 protein genes of rubella virus vaccine strain RA27/3. Nucleic Acids Research 17:4393–4394
    [Google Scholar]
  25. Oker-Blom C., Kalkkinen N., Kaarainen L., Petterssen R. F. 1983; Rubella virus contains one capsid protein and three envelope glycoproteins E1, E2a and E2b. Journal of Virology 46:964–973
    [Google Scholar]
  26. Robertson B. H., Jansen R. W., Khanna B., Totsuka A., Nainan O. V., Siegl G., Widell A., Margolis H. S., Isomura S., Ito K., Ishizu T., Moritsugu Y., Lemon S. M. 1992; Genetic relatedness of hepatitis A virus strains recovered from different geographical regions. Journal of General Virology 73:1365–1377
    [Google Scholar]
  27. Starkey W. G., Newcombe J., Corbett K. M., Liu K. M., Sanders P. G., Best J. M. 1995; Use of rubella E1 fusion proteins for detection of rubella virus antibodies. Journal of Clinical Microbiology 33:270–274
    [Google Scholar]
  28. Taylor M. J., Godfrey E., Baczko K., ter Meulen V., Wild T. F., Rima B. K. 1991; Identification of several different lineages of measles virus. Journal of General Virology 72:83–88
    [Google Scholar]
  29. Terry G. M., Ho-Terry L. M., Londesborough P., Rees K. R. 1988; Localization of the rubella E1 epitopes. Archives of Virology 98:189–197
    [Google Scholar]
  30. Wong-Staal F. 1990; Human immunodeficiency viruses and their replication. In Virology pp 1529–1543 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  31. Yamashita M., Krystal M., Fitch W., Palese P. 1988; Influenza B virus evolution: co-circulating lineages and comparison of evolutionary pattern with those of influenza A and C viruses. Virology 163:112–122
    [Google Scholar]
  32. Zheng D., Dickens L., Liu T. Y., Nakhasi H. L. 1989; Nucleotide sequence of the 24S subgenomic messenger RNA of a vaccine strain (HPV77) of rubella virus: comparison with a wild type strain. Gene 82:343–349
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-10-2523
Loading
/content/journal/jgv/10.1099/0022-1317-77-10-2523
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error