1887

Abstract

Restriction mapping and the determination of scattered nucleotide sequences have permitted a description of the global structure and evolutionary affinities of the canine herpesvirus (CHV) genome. The global structure closely resembles that of the totally sequenced genomes of varicella-zoster virus and equine herpesvirus 1 (EHV-1) in having a 37 bp inverted repeat flanking a long unique region (U) of approximately 100000 bp, and a 10100–10700 bp inverted repeat flanking a short unique region (U) of roughly 7400–8600 bp. On the basis of the sequences obtained, 35 homologues to previously identified herpesvirus gene products were found in U and the major inverted repeat, and the level of the similarities indicated that CHV belongs to the genus . Within the genus, CHV appears to be most closely related to EHV-1, pseudorabies virus and feline herpesvirus. Surprisingly, genes for both subunits of the viral ribonucleotide reductase were found to be missing from their equivalent place in other herpesvirus genomes. Either they have been translocated to another position in the CHV genome or, we think more likely, they have been lost.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-1-37
1996-01-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/1/JV0770010037.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-1-37&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Meyers E. W., Lipman D. J. 1990; Basic local alignment search tool. Journal of Molecular Biology 215:403–410
    [Google Scholar]
  2. Anvik J. O. 1991; Clinical considerations of canine herpesvirus infection. Veterinary Medicine 4:394–403
    [Google Scholar]
  3. Bankier A. T., Dietrich W., Baer R., Barrell B. G., Colbère-Garapin F., Fleckenstein B., Bodemer W. 1985; Terminal repetitive sequences in herpesvirus saimiri virion DNA. Journal of Virology 55:133–139
    [Google Scholar]
  4. Berthomme H. L. J., Jacquemont B., Epstein A. L. 1993; The pseudorabies virus host-shutoff homolog gene: nucleotide sequence and comparison with alphaherpesvirus protein counterparts. Virology 193:1028–1032
    [Google Scholar]
  5. Berthomme H. L. J., Monahan S. J., Parris D. S., Jacquemont B., Epstein A. L. 1995; Cloning, sequencing, and functional characterization of the two subunits of the pseudorabies virus DNA polymerase holoenzyme: evidence for specificity of interaction. Journal of Virology 69:2811–2818
    [Google Scholar]
  6. Carmichael L. E., Strandberg J. D., Barnes F. D. 1965; Identification of a cytopathogenic agent infectious for puppies as a canine herpesvirus. Proceedings of the Society for Experimental Biology and Medicine 120:644–650
    [Google Scholar]
  7. Carmichael L. E., Barnes F. D., Percy D. H. 1969; Temperature as a factor in resistance of young puppies to canine herpesvirus. Journal of Infectious Diseases 120:669–678
    [Google Scholar]
  8. Carpenter D. E., Misra V. 1992; Sequences of the bovine herpesvirus 1 homologue of herpes simplex virus type 1 alpha-transinducing factor (U48). Gene 119:259–263
    [Google Scholar]
  9. Cebrian J., Bucchini D., Sheldrick P. 1983; ‘Endless’ DNA in cells infected with channel catfish virus. Journal of Virology 46:405–412
    [Google Scholar]
  10. Cheung A. K. 1989; DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucleic Acids Research 17:4637–4646
    [Google Scholar]
  11. Cheung A. K. 1991; Cloning of the latency gene and the early protein O gene of pseudorabies virus. Journal of Virology 65:5260–5271
    [Google Scholar]
  12. Chowdhury S. L., Buhk H. J., Ludwig H., Hammerschmidt W. 1990; Genomic termini of equine herpesvirus 1. Journal of Virology 64:873–880
    [Google Scholar]
  13. Clements J. B., Easton A. J., Rixon F. J., Whitton J. L. 1983; Immediate-early mRNA-2 of herpes simplex viruses types 1 and 2 is unspliced: conserved sequences around the 5′ and 3′ termini correspond to transcription regulatory signals. Nucleic Acids Research 11:6271–6287
    [Google Scholar]
  14. Davison A. J. 1984; Structure of the genome termini of varicellazoster virus. Journal of General Virology 65:1969–1977
    [Google Scholar]
  15. Davison A. J. 1993; Herpesvirus genes. Reviews in Medical Virology 3:237–244
    [Google Scholar]
  16. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  17. Davison A. J., Scott J. E. 1985; DNA sequence of the major inverted repeat in the varicella-zoster virus genome. Journal of General Virology 66:207–220
    [Google Scholar]
  18. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  19. Dean H. J., Cheung A. K. 1993; A 3′ coterminal gene cluster in pseudorabies virus contains herpes simplex virus ULI, UL2, and UL3 gene homologs and a unique UL3.5 open reading frame. Journal of Virology 67:5955–5961
    [Google Scholar]
  20. Dean H. J., Cheung A. K. 1994; Identification of pseudorabies virus UL4 and UL5 (helicase) genes. Virology 202:962–967
    [Google Scholar]
  21. Debroy C. 1990; Nucleotide sequence of the herpes simplex type 2 syn gene that causes cell fusion. Gene 88:275–277
    [Google Scholar]
  22. Deiss L. P., Chou J., Frenkel N. 1986; Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. Journal of Virology 59:605–618
    [Google Scholar]
  23. Dessen P., Fondrat C., Valencien C., Mugnier C. 1990; Bisance: a French service for access to biomolecular sequence databases. CABIOS 6:355–356
    [Google Scholar]
  24. De Wind N., Domen J., Berns A. A. 1992; Herpesviruses encode an unusual protein-serine/threonine kinase which is nonessential for growth in cultured cells. Journal of Virology 66:5200–5209
    [Google Scholar]
  25. Everett R. D., Fenwick M. L. 1990; Comparative DNA sequence analysis of the host shutoff genes of different strains of herpes simplex virus: type 2 strain HG52 encodes a truncated UL41 product. Journal of General Virology 71:1387–1390
    [Google Scholar]
  26. Fitzpatrick D. R., Babiuk L. A., Zamb T. J. 1989; Nucleotide sequence of bovine herpesvirus type 1 glycoprotein gIII, a structural model for gIII as a new member of the immunoglobulin superfamily, and implications for the homologous glycoproteins of other herpesviruses. Virology 173:46–57
    [Google Scholar]
  27. Fraefel C., Wirth U. V., Vogt B., Schwyzer M. 1993; Immediate-early transcription over covalently joined genome ends of bovine herpesvirus 1: the circ gene. Journal of Virology 67:1328–1333
    [Google Scholar]
  28. Goad W. B., Kanehisa M. I. 1982; Pattern recognition in nucleic acid sequences. I. A general method for finding local homologies and symmetries. Nucleic Acids Research 10:247–263
    [Google Scholar]
  29. Goldstein D. J., Weller S. K. 1988; Factor(s) present in herpes simplex virus type 1 infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology 166:41–51
    [Google Scholar]
  30. Goodheart C. R., Plummer G. 1975; The densities of herpes viral DNAs. Progress in Medical Virology 19:324–352
    [Google Scholar]
  31. Griffin A. M., Boursnell M. E. G. 1990; Analysis of the nucleotide sequence of DNA from the region of the thymidine kinase gene of infectious laryngotracheitis virus; potential evolutionary relationships between the herpesvirus subfamilies. Journal of General Virology 71:841–850
    [Google Scholar]
  32. Hammerschmidt W., Ludwig H., Buhk H. J. 1988; Specificity of cleavage in replicative-form DNA of bovine herpesvirus 1. Journal of Virology 62:1355–1363
    [Google Scholar]
  33. Harper L., Demarchi J., Ben-Porat T. 1986; Sequence of the genome ends and of the junction between the ends in concatemeric DNA in pseudorabies virus. Journal of Virology 60:1183–1185
    [Google Scholar]
  34. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  35. Honess R. W., Gompels U. A., Barrell B. G., Craxton M., Cameron K. R., Staden R., Chang Y.-N., Hayward G. S. 1989; Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. Journal of General Virology 70:837–855
    [Google Scholar]
  36. Ihara T., Kato A., Ueda S., Ishihama A., Hirai K. 1989; Comparison of the sequence of the glycoprotein A (gA) gene between Md5 and BC-1 strains of Marek’s disease virus. Virus Genes 3:125–137
    [Google Scholar]
  37. Kato A., Sato I., Ihara T., Susumu U., Ishihama A., Hirai K. 1989; Homologies between herpesvirus of the turkey and Marek’s disease virus type-1 DNAs within two co-linearly arranged open reading frames, one encoding glycoprotein A. Gene 84:399–405
    [Google Scholar]
  38. Kawaguchi Y., Maeda K., Miyazawa T., Ono M., Kai C., Mikami T. 1994; Nucleotide sequence and characterization of the feline herpesvirus type 1 immediate early gene. Virology 204:430–435
    [Google Scholar]
  39. Klupp B. G., Kern H., Mettenleiter T. C. 1992; The virulencedetermining genomic BamHI fragment 4 of pseudorabies virus contains genes corresponding to the UL15 (partial), UL18, UL19, UL20, and UL21 genes of herpes simplex virus and a putative origin of replication. Virology 191:900–908
    [Google Scholar]
  40. Klupp B. G., Baumeister J., Karger A., Visser N., Mettenleiter T. C. 1994; Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. Journal of Virology 68:3868–3878
    [Google Scholar]
  41. Krakowka S. 1985; Canine herpesvirus. In Comparative Patho-biology of Viral Diseases vol 1 pp 137–144 Edited by Olsen R. G., Krakowka S., Blakeslee J. R. Boca Raton: CRC Press;
    [Google Scholar]
  42. Leung-Tack P., Audonnet J.-C., Riviere M. 1994; The complete DNA sequence and the genetic organization of the short unique region (Us) of the bovine herpesvirus type 1 (ST strain). Virology 199:409–421
    [Google Scholar]
  43. Limbach K. J., Limbach M. P., Conte D., Paoletti E. 1994; Nucleotide sequence of the genes encoding the canine herpesvirus gB, gC and gD homologues. Journal of General Virology 75:2029–2039
    [Google Scholar]
  44. Lust G., Carmichael L. E. 1971; Suppressed synthesis of viral DNA, protein, and mature virions during replication of canine herpesvirus at elevated temperature. Journal of Infectious Diseases 124:572–580
    [Google Scholar]
  45. McGeoch D. J., Cook S. 1994; Molecular phylogeny of the Alphaherpesvirinae subfamily and a proposed evolutionary timescale. Journal of Molecular Biology 238:9–22
    [Google Scholar]
  46. McGeoch D. J., Dolan A., Donald S., Brauer D. H. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  47. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  48. McGeoch D. J., Cunningham C., McIntyre G., Dolan A. 1991; Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique region in the genomes of herpes simplex viruses types 1 and 2. Journal of General Virology 72:3057–3075
    [Google Scholar]
  49. McGeoch D. J., Barnett B. C., MacLean C. A. 1993; Emerging functions of alphaherpesvirus genes. Seminars in Virology 4:125–134
    [Google Scholar]
  50. McGeoch D. J., Cook S., Dolan A., Jamieson F. E., Telford A. R. 1995; Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. Journal of Molecular Biology 247:443–458
    [Google Scholar]
  51. Maeda K., Horimoto T., Norimine J., Kawaguchi Y., Tomonaga K., Niikura M., Kai C., Takahashi E., Mikami T. 1992; Identification and nucleotide sequence of a gene in feline herpesvirus type 1 homologous to the herpes simplex virus gene encoding the glycoprotein B. Archives of Virology 127:387–397
    [Google Scholar]
  52. Manning A., Buchan A., Skinner G. R. B., Durham J., Thompson H. 1988; The immunological relationship between canine herpesvirus and four other herpesviruses. Journal of General Virology 69:1601–1608
    [Google Scholar]
  53. Marks J. R., Spector D. H. 1988; Replication of the murine cytomegalovirus genome: structure and role of the termini in the generation and cleavage of concatenates. Virology 162:98–107
    [Google Scholar]
  54. Matsuo T., Heller M., Petti L., O’Shiro E., Kieff E. 1984; Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science 226:1322–1325
    [Google Scholar]
  55. Mierendorf R. C., Pfeffer D. 1987; Direct sequencing of denatured plasmid DNA. Guide to molecular cloning techniques. Methods in Enzymology 152:556–562
    [Google Scholar]
  56. Mittal S. K., Field FL J. 1989; Analysis of the bovine herpesvirus type 1 thymidine kinase (TK) gene from wild-type virus and TK-deficient mutants. Journal of General Virology 70:901–918
    [Google Scholar]
  57. Nunberg J. H., Wright D. K., Cole G. E., Petrovkis E. A., Post L. E., Compton T., Gilberg J. H. 1989; Identification of the thymidine kinase gene of feline herpesvirus: use of degenerate oligonucleotides in the polymerase chain reaction to isolate herpesvirus gene homologues. Journal of Virology 63:3240–3249
    [Google Scholar]
  58. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, USA 85:2444–2448
    [Google Scholar]
  59. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  60. Pignatti P. F., Cassai E., Meneguzzi G., Chanciner N., Milanesi G. 1979; Herpes simplex virus DNA isolation from infected cells with a novel procedure. Virology 93:260–264
    [Google Scholar]
  61. Priola S. A., Stevens J. G. 1991; The 5′ and 3′ limits of transcription in the pseudorabies virus latency associated transcription unit. Virology 182:852–856
    [Google Scholar]
  62. Rémond M., Sheldrick P., Lebreton F., Foulon T. 1995; Sequence of the canine herpesvirus thymidine kinase gene: taxonpreferred amino acid residues in the alphaherpesviral thymidine kinases. Virus Research (in press)
    [Google Scholar]
  63. Ren D., Lee L. F., Coussens P. M. 1994; Identification and characterization of Marek’s disease virus genes homologous to ICP27 and glycoprotein K of herpes simplex virus. Virology 204:242–250
    [Google Scholar]
  64. Robbins A. K., Watson R. J., Whealy M. E., Hays W. W., Enquist L. W. 1986; Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein C. Journal of Virology 58:339–347
    [Google Scholar]
  65. Robbins A. K., Dorney D. J., Whathen M. W., Whealy M. E., Gold C., Watson R. J., Holland L. E., Weed S. D., Levine M., Glorioso J. C., Enquist L. W. 1987; The pseudorabies virus gII gene is closely related to the gB glycoprotein gene of herpes simplex virus. Journal of Virology 61:2691–2701
    [Google Scholar]
  66. Roizman B., Desrosiers R. C., Fleckenstein B., Lopez C., Minson A. C., Studdert M. J. 1992; The family Herpesviridae: an update. Archives of Virology 123:425–449
    [Google Scholar]
  67. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  68. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  69. Schwyzer M., Vlcek C., Menekse O., Fraefel C., Paces V. 1993; Promoter, spliced leader, and coding sequence for BICP4, the largest of the immediate-early proteins of bovine herpesvirus 1. Virology 197:349–357
    [Google Scholar]
  70. Scott S. D., Ross N. L. J., Binns M. M. 1989; Nucleotide and predicted amino acid sequences of the Marek’s disease virus and turkey herpesvirus thymidine kinase genes; comparison with thymidine kinase gene of other herpesviruses. Journal of General Virology 70:3055–3065
    [Google Scholar]
  71. Smiley J. R., Lavcry C., Howes M. 1992; The herpes simplex virus type 1 (HSV-1) a sequence serves as a cleavage/packaging signal but does not drive recombinational genome isomerization when it is inserted into the HSV-2 genome. Journal of Virology 66:7505–7510
    [Google Scholar]
  72. Stewart S. 1965; Herpes-like virus isolated from neonatal and fetal dogs. Science 148:1341–1343
    [Google Scholar]
  73. Stow N., McMonagle E., Davison A. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  74. Sun Y., MacLean A. R., Brown S. M. 1995; Identification and characterization of the protein product of gene 67 in equine herpesvirus type 1 strain Ab4. Journal of General Virology 76:541–550
    [Google Scholar]
  75. Swain M. A., Galloway D. A. 1983; Nucleotide sequence of the herpes simplex virus type 2 thymidine kinase gene. Journal of Virology 46:1045–1050
    [Google Scholar]
  76. Swain M. A., Peet R. W., Galloway D. A. 1985; Characterization of the gene encoding herpes simplex virus type 2 glycoprotein C and comparison with the type 1 counterpart. Journal of Virology 53:561–569
    [Google Scholar]
  77. Tamashiro J. C., Spector D. H. 1986; Terminal structure and heterogeneity in human cytomegalovirus strain AD169. Journal of Virology 59:591–604
    [Google Scholar]
  78. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  79. Tsurumi T., Maeno K., Nishiyama Y. 1987; Nucleotide sequence of the DNA polymerase gene of herpes simplex virus type 2 and comparison with the type 1 counterpart. Gene 52:129–137
    [Google Scholar]
  80. Turk S. R., Kik N. A., Birch G. M., Chiego D. J. Jr, Shipman L. Jr 1989; Herpes simplex virus type 1 ribonucleotide reductase null mutants induce lesions in guinea pigs. Virology 173:733–735
    [Google Scholar]
  81. Varmuza S. L., Smiley J. R. 1985; Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41:793–802
    [Google Scholar]
  82. Ward P. L., Roizman B. 1994; Herpes simplex genes: the blueprint of a successful human pathogen. Trends in Genetics 10:267–274
    [Google Scholar]
  83. Whitbeck J. C., Bello L. J., Lawrence W. C. 1988; Comparison of the bovine herpesvirus 1 gl gene and the herpes simplex virus type 1 gB gene. Journal of Virology 62:3319–3327
    [Google Scholar]
  84. Willemse M. J., Chalmers W. S. K., Cronenberg A. M., Pfundt R., Strijdveen I. G. L., Sondermeijer P. J. A. 1994; The gene downstream of the gC homologue in feline herpes virus type 1 is involved in the expression of virulence. Journal of General Virology 75:3107–3116
    [Google Scholar]
  85. Wirth U. V., Vogt B., Vlặcek C., Paces V., Schwyzer M., Fraefel C. 1992; Immediate-early RNA 2-9 and early RNA 2-6 of bovine herpesvirus 1 are 3′ coterminal and encode a putative zinc finger transactivator protein. Journal of Virology 66:2763–2772
    [Google Scholar]
  86. Yamada S., Imada T., Watanabe W., Honda Y., Nakajima-Iuima S., Shimizu Y., Sekikawa K. 1991; Nucleotide sequence and transcriptional mapping of the major capsid protein gene of pseudorabies virus. Virology 185:56–66
    [Google Scholar]
  87. Yamada Y., Kimura H., Morishima T., Daikoku T., Maeno K., Nishiyama Y. 1991; The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex type 1 in mice. Journal of Infectious Diseases 164:1091–1097
    [Google Scholar]
  88. Yanagida N., Yoshida S., Nazerian K., Lee L. F. 1993; Nucleotide and predicted amino acid sequences of Marek’s disease virus homologues of herpes simplex virus major tegument proteins. Journal of General Virology 74:1837–1845
    [Google Scholar]
  89. Yoshida S., Lee L. F., Yanagida N., Nazerian K. 1994; Identification and characterization of a Marek’s disease virus gene homologous to glycoprotein L of herpes simplex virus. Virology 204:414–419
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-1-37
Loading
/content/journal/jgv/10.1099/0022-1317-77-1-37
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error