1887

Abstract

Comparisons of the RNA polymerase and capsid sequences of small round structured viruses (SRSVs) have recently shown these are genetically diverse viruses which fall into two distinct groups. The genomes of two group I viruses, Southampton and Norwalk viruses have been characterized; however, similar data for the genetic group II SRSVs have not been available until now. We report here the complete genome sequence of a recent group II SRSV, Lordsdale virus. The Lordsdale virus genome is 7555 nt in length and has a similar organization to the group I SRSVs. The large ORF in the 5′ half of the genome (5100 nt) is shorter than the group I SRSV ORF1 (5367 nt), but has the characteristic 2C helicase, 3C protease and 3D RNA polymerase enzyme motifs. ORF2, encoding the structural protein is of a similar size to the group I viruses but the small 3′-terminal ORF is significantly larger in group II. A highly conserved sequence of 28 nt was identified at the start of Lordsdale virus ORF1 and repeated at the start of ORF2. These conserved motifs are typical of the animal caliciviruses. Comparison of the 150 N-terminal amino acids in the ORF1 protein revealed little identity between the two SRSV genetic groups, reflecting the shorter ORF1 in the group II virus. Recombinant baculoviruses containing ORF2 and ORF3 sequences were constructed and used to express large quantities of the group II Lordsdale virus structural protein. The capsid protein formed virus-like particles by self assembly which resembled ‘empty’ SRSVs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-9-2349
1995-09-01
2022-08-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/9/JV0760092349.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-9-2349&mimeType=html&fmt=ahah

References

  1. Ando T., Mulders M. N., Lewis D. C., Estes M. K., Monroe S. S., Glass R. I. 1994; Comparison of the polymerase region of small round structured virus strains previously classified in three antigenic types by solid-phase immune electron microscopy. Archives of Virology 135:217–226
    [Google Scholar]
  2. Boniotti B., Wirblich C., Sibilia M., Meyers G., Thiel H. J., Rossi C. 1994; Identification and characterisation of a 3C-like protease from rabbit haemorrhagic disease virus. Journal of Virology 68:6487–6495
    [Google Scholar]
  3. Bork P., Koonin E. 1993; An expanding family of helicases within the ‘DEAD/H’ superfamily. Nucleic Acids Research 21:735–752
    [Google Scholar]
  4. Carter M. J., Milton I. G., Mf.anger J., Bennett M., Gaskell R. M., Turner P. C. 1992; The complete nucleotide sequence of a feline calicivirus. Virology 190:443–448
    [Google Scholar]
  5. Cubitt W. D., Jiang X., Wang J., Estes M. K. 1994; Sequence similarity of human caliciviruses and small round structured viruses. Journal of Medical Virology 43:252–258
    [Google Scholar]
  6. Dolin R., Blacklow N. R., Dupont H., Formal S., Buscho R. F., Kasel J. A., Chames R. P., FIornik R., Chanock R. M. 1971; Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. Journal of Infectious Diseases 123:307–312
    [Google Scholar]
  7. Dougherty W. G., Semler B. L. 1993; Expression of virus-encoded proteases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57:781–822
    [Google Scholar]
  8. Froussard P. 1992; A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Research 20:2900
    [Google Scholar]
  9. Green S. M., Dingle K. E., Lambden P. R., Caul E. O., Ashley C. R., Clarke I. N. 1994; Human enteric Caliciviridae: a new and prevalent small round structured virus group defined by RNA-dependent RNA polymerase and capsid diversity. Journal of General Virology 75:1883–1888
    [Google Scholar]
  10. Greenberg H. B., Valdesuso J. R., Kalica A. R., Wyatt R. G., McAuliffe V. J., Kapikian A. Z., Chanock R. M. 1981; Proteins of Norwalk virus. Journal of Virology 37:994–999
    [Google Scholar]
  11. Grothues D., Cantor C. R., Smith C. L. 1993; PCR amplification of megabase DNA with tagged random primers (T-PCR). Nucleic Acids Research 21:1321–1322
    [Google Scholar]
  12. Higgins D. G., Bleasby A. J., Fuchs R. 1992; CLUSTAL V-improved software for multiple sequence alignment. Computer Applications in the Biosciences 8:189–191
    [Google Scholar]
  13. Jiang X., Graham D. Y., Wang K., Estes M. K. 1990; Norwalk virus genome cloning and characterization. Science 250:1580–1583
    [Google Scholar]
  14. Jiang X., Wang M., Graham D. Y., Estes M. 1992; Expression, self assembly, and antigenicity of the Norwalk virus capsid protein. Journal of Virology 66:6527–6532
    [Google Scholar]
  15. Jiang X., Wang M., Wang K., Estes M. K. 1993; Sequence and genomic organization of Norwalk virus. Virology 195:51–61
    [Google Scholar]
  16. Kapikian A. Z., Chanock R. M. 1990; The Norwalk group of viruses. In Virology chapter 24 pp 671–693 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  17. Lambden P. R., Caul E. O., Ashley C. R., Clarke I. N. 1993; Sequence and genomic organization of a human small round structured (Norwalk-like), virus. Science 259:516–519
    [Google Scholar]
  18. Lambden P. R., Liu B.-L., Clarke I. N. 1995; A conserved sequence motif at the 5′ terminus of the Southampton virus genome is characteristic of the Caliciviridae. Virus Genes (in press)
    [Google Scholar]
  19. Lew J. F., Kapikian A. Z., Valdesuso J., Green K. Y. 1994a; Molecular characterization of Hawaii virus and other Norwalk-like viruses: evidence for genetic polymorphism among human calici-viruses. Journal of Infectious Diseases 170:535–542
    [Google Scholar]
  20. Lew J. E., Kapikian A. Z., Jiang X., Estes M. K., Green K. Y. 1994b; Molecular characterization and expression of the capsid protein of a Norwalk-like virus recovered from a Desert Shield troop with gastroenteritis. Virology 200:319–325
    [Google Scholar]
  21. Madore H. P., Treanor J. J., Dolin R. 1986; Characterization of the Snow Mountain agent of viral gastroenteritis. Journal of Virology 58:487–192
    [Google Scholar]
  22. Matsui S. M., Kim J. P., Greenberg H. B., Wanchuang S., Sun Q., Johnson P. C., Dupont H. L., Oshiro L. S., Reyes G. R. 1991; The isolation and characterization of a Norwalk virus specific cDNA. Journal of Clinical Investigation 87:1456–1461
    [Google Scholar]
  23. Meyers G., Wirblich C., Thiel H. 1991a; Rabbit haemorrhagic disease virus - molecular cloning and nucleotide sequencing of a calicivirus genome. Virology 184:664–676
    [Google Scholar]
  24. Meyers G., Wirblich C., Thiel H. 1991b; Genomic and subgenomic RNAs of rabbit haemorrhagic disease virus are both protein-linked and packaged into particles. Virology 184:677–686
    [Google Scholar]
  25. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, USA 85:2444–2448
    [Google Scholar]
  26. Semler B. L., Hanecak R., Anderson C. W., Wimmer E. 1981; Cleavage sites in the polypeptide precursors of poliovirus protein P2-X. Virology 114:589–594
    [Google Scholar]
  27. Tam A. W., Smith M. M., Guerra M. E., Huang C., Bradley D. W., Fry K. E., Reyes G. R. 1991; Hepatitis E virus (HEV): molecular cloning and sequencing of the full length genome. Virology 185:120–131
    [Google Scholar]
  28. Wang J., Jiang X., Madore H. P., Gray J., Desselberger U., Ando T., Seto Y., Oishi I., Lew J. F., Green K. Y., Estes M. K. 1994; Sequence diversity of small, round-structured viruses in the Norwalk virus group. Journal of Virology 68:5982–5900
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-9-2349
Loading
/content/journal/jgv/10.1099/0022-1317-76-9-2349
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error