1887

Abstract

Synthesis of cDNA probes by random-priming of a viroid template displays the unusual property of specificity to all members included within a single citrus viroid Group. The specificity of hybridization reactions was influenced by the structural conformation of the viroid RNA template, reaction conditions for reverse transcription and hybridization protocols. Mapping the loci for probe transcription from the CEVd, CVd-IIb, and CVd-IV genomes suggests that a similar structured conformation may be responsible for group specificity. A stem-loop configuration in the viroid template and hybridization target sites can be proposed to be responsible for the availability of the group-specific sequences.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-5-1081
1995-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/5/JV0760051081.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-5-1081&mimeType=html&fmt=ahah

References

  1. Ashulin L., Lachman O., Hadas R., BarJoseph M. 1991; Nucleotide sequence of a new viroid species, citrus bent leaf viroid (CBLVd) isolated from grapefruit in Israel. Nucleic Acids Research 19:4767
    [Google Scholar]
  2. Duran-Vila N., Roistacher C. N., Rivera-Bustamante R., Semancik J. S. 1988; A definition of citrus viroid groups and their relationship to the exocortis disease. Journal of General Virology 69:3069–3080
    [Google Scholar]
  3. Garger S. J., Turpen T., Carrington J. C., Morris T. J., Dodds J. A., Grill L. K. 1983; Rapid detection of plant viruses by dot blot hybridization. Plant Molecular Biology Reporter 1:21–25
    [Google Scholar]
  4. Gross H. J., Krupp G., Domdey H., Raba M., Alberty H., Lossow C. H., Ramm K., Sanger H. L. 1982; Nucleotide sequence and secondary structure of citrus exocortis and chrysanthemum stunt viroid. European Journal of Biochemistry 121:249–257
    [Google Scholar]
  5. Igloi G. L. 1983; A silver stain for the detection of nanogram amounts of tRNA following two-dimensional electrophoresis. Analytical Biochemistry 134:184–188
    [Google Scholar]
  6. Innes M. A., Gelfand D. H., Sninsky J. J., White T. J. (Editors) 1990 PCR Protocols San Diego: Academic Press;
    [Google Scholar]
  7. Keese P., Symons R. H. 1985; Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences, USA 82:4582–4586
    [Google Scholar]
  8. Loss P., Schmitz M., Steger G., Riesner D. 1991; Formation of a thermodynamically metastable structure containing hairpin II is critical for infectivity of potato spindle tuber viroid RNA. EMBO Journal 10:719–727
    [Google Scholar]
  9. Puchta H., Ramm K., Luckinger R., Hadas R., Bar-Joseph M., Sanger H. L. 1991; Primary and secondary structure of citrus viroid IV (CVd-IV), a new chimeric viroid present in dwarfed grapefruit in Israel. Nucleic Acids Research 19:6640
    [Google Scholar]
  10. Qu F., Heinrich C., Loss P., Steger G., Tien P., Riesner D. 1993; Multiple pathways of reversion in viroids for conservation of structural elements. EMBO Journal 12:2129–2139
    [Google Scholar]
  11. Rakowski A. G., Szychowski J. A., Avena Z. S., Semancik J. S. 1994; Nucleotide sequence and structural features of the Group III citrus viroids. Journal of General Virology 75:3581–3584
    [Google Scholar]
  12. Riesner D. 1991; Viroids: from thermodynamics to cellular structure and function. Molecular Plant-Microbe Interaction 4:122–131
    [Google Scholar]
  13. Rigden J. E., Rezaian M. A. 1992; In vitro synthesis of an infectious viroid: analysis of the infectivity of monomeric linear CEV. Virology 186:201–206
    [Google Scholar]
  14. Rivera-Bustamante R., Gin R., Semancik J. S. 1986; Enhanced resolution of circular and linear molecular forms of viroid and viroid-like RNA by electrophoresis in a discontinuous-pH system. Analytical Biochemistry 15:91–95
    [Google Scholar]
  15. Sambrook B., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd Edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Sano T., Kudo H., Sugimoto T., Shikata E. 1988; Synthetic oligonucleotide hybridization probes to diagnose hop stunt viroid strains and citrus exocortis viroid. Journal of Virological Methods 19:109–120
    [Google Scholar]
  17. Schroeder J. L., Blattner F. R. 1982; Formal description of a DNA oriented computer language. Nucleic Acid Research 10:69–84
    [Google Scholar]
  18. Semancik J. S., Duran-Vila N. 1991; The grouping of citrus viroids: additional physical and biological determinants and relationship with diseases of citrus. Proceedings of the International Organization of Citrus Virologists 10:178–188
    [Google Scholar]
  19. Semancik J. S., Harper K. L. 1984; Optimal conditions for cell-free synthesis of citrus exocortis viroid and the question of specificity of RNA polyerase activity. Proceedings of the National Academy of Sciences, USA 81:4429–1433
    [Google Scholar]
  20. Semancik J. S., Roistacher C. N., Rivera-Bustamante R., Duran-Vila N. 1988; Citrus cachexia viroid, a new viroid of citrus: relationship to viroids of the citrus exocortis disease complex. Journal of General Virology 69:3059–3068
    [Google Scholar]
  21. Visvader J. E., Symons R. H. 1985; Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Research 13:2907–2920
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-5-1081
Loading
/content/journal/jgv/10.1099/0022-1317-76-5-1081
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error