1887

Abstract

C57BL/6 mice infected with increasing doses of the Armstrong isolate of lymphocytic choriomeningitis virus (LCMV) or a variant Cl 13-Armstrong, derived from LCMV-Armstrong, exhibited distinct phenotypes with respect to clearance of virus and to cytotoxic CD8 T cell (CTL)-dependent immunopathological disease. Low (10 p.f.u.) and high doses (10 p.f.u.) of LCMV-Armstrong were cleared rapidly from immunocompetent mice. Inoculation of a high dose (10 p.f.u.) of LCMV Cl 13-Armstrong temporarily induced a partial deletion of the antiviral CTL precursors (CTL-p) leading to chronic infection in several organs. Although virus was cleared from most organs by day 90–150 post-infection, it persisted in the kidney. The few remaining CTL-p were able to expand and eventually clear the virus. Systemic viral titres correlated inversely with the number of CTL-p. However, in contrast LCMV-Docile injected at high dose was able to cause complete exhaustion of CTL-p resulting in long term viral persistence. LCMV-Aggressive, derived from the same parental LCMV-WE (UBC) as Docile, showed a phenotype comparable to wild-type virus. Doses of < 10 p.f.u. of both Armstrong virus and of Cl 13-Armstrong failed to exhaust CTL-p and caused lethal CD8 T cell-dependent chorio-meningitis and a substantial footpad swelling after local infection. By contrast, doses > 10 p.f.u. of LCMV-Docile failed to cause lethal choriomeningitis in C57BL/6 mice. When Cl 13-Armstrong virus (but not LCMV-Armstrong) was injected intravenously in addition to intracerebrally or into the foot, the local immunopathology was abrogated in a dose-dependent fashion. The suppression of immunopathology paralleled the extent of exhaustion of the specific CD8 T cell response. Nucleotide sequence analysis of the viral S-RNA fragments coding for CTL epitopes in H-2 mice revealed an asparagine to serine change of amino acid 280 in the CTL epitope 275–286 of the LCMV-Docile glycoprotein (GP) in comparison to LCMV-Aggressive or wild-type WE. This change reduced overall CTL activity and thereby probably contributes to exhaustion of CTL responses in C57BL/6 (H-2) mice. Thus, local versus systemic antigen distribution, viral characteristics and immunological parameters determine induction and exhaustion of CD8 T cells and the course and extent of immunopathological disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-2-381
1995-02-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/2/JV0760020381.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-2-381&mimeType=html&fmt=ahah

References

  1. Ahmed R., Salmi A., Butler L. D., Chiller J. M., Oldstone M. B. A. 1984; Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice: role in suppression of cytotoxic T lymphocyte response and viral persistence. Journal of Experimental Medicine 60:521–540
    [Google Scholar]
  2. Ahmed R., Butler L. D., Bhatti L. 1988a; T4+ T helper cell function in vivo: differential requirement for induction of antiviral cytotoxic T-cell and antibody responses. Journal of Virology 62:2102–2106
    [Google Scholar]
  3. Ahmed R., Simon R. S., Matloubian M., Kolhekar S. R., Southern P. J., Freedman D. M. 1988b; Genetic analysis of in vivo-selected viral variants causing chronic infection: importance of mutation in the L RNA segment of lymphocytic choriomeningitis virus. Journal of Virology 62:3301–3308
    [Google Scholar]
  4. Ahmed R., Hahn C. S., Somasundaram T., Villarete L., Matloubian M., Strauss J. H. 1991; Molecular basis of organ-specific selection of viral variants during chronic infection. Journal of Virology 65:4242–1247
    [Google Scholar]
  5. Battegay M., Cooper S., Althage A., Baenziger J., Hengartner H., Zinkernagel R. M. 1991; Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24 or 96 well plates. Journal of Virological Methods 33:191–198
    [Google Scholar]
  6. Battegay M., Moskophidis D., Waldner H., Brundler M.-A., Fung-Leung W.-P., Mak T. W., Hengartner H., Zinkernagel R. M. 1993; Impairment and delay of neutralizing antiviral antibody responses by virus specific cytotoxic T cells. Journal of Immunology 151:5408–5415
    [Google Scholar]
  7. Battegay M., Moskophidis D., Rahemtulla A., Hengartner H., Mak T. W., Zinkernagel R. M. 1994; Enhanced establishment of a virus carrier state in adult CD4+ T cell deficient mice. Journal of Virology 68:4700–4704
    [Google Scholar]
  8. Byrne J. A., Oldstone M. B. A. 1984; Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus in vivo. Journal of Virology 51:682–686
    [Google Scholar]
  9. Cihak J., Lehmann-Grube F. 1978; Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected carrier mice: evidence supporting a clonal inactivation mechanism. Immunology 34:265
    [Google Scholar]
  10. Cole G. A., Nathanson N., Prendergast R. A. 1972; Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature 238:335–337
    [Google Scholar]
  11. Dutko F. J., Oldstone M. B. A. 1983; Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. Journal of General Virology 64:1689–1698
    [Google Scholar]
  12. Gegin C., Lehmann-Grube F. 1992; Control of acute infection with lymphocytic choriomeningitis virus in mice that cannot present an immunodominant viral cytotoxic T lymphocyte epitope. Journal of Immunology 149:3331–3338
    [Google Scholar]
  13. Gilden D. H., Cole G. A., Monjan A. A., Nathanson N. 1972; Immunopathogenesis of acute central nervous system disease produced by lymphocytic choriomeningitis virus. I. Cyclophosphamide-mediated induction of the virus-carrier state in adult mice. Journal of Experimental Medicine 135:860–873
    [Google Scholar]
  14. FIerman A., Kappler J. W., Marrack P., Pullen A. M. 1991; Superantigens: mechanism of T-cell stimulation and role in immune responses. Annual Review of Immunology 9:745–772
    [Google Scholar]
  15. Hotchin J. 1971; Persistent and slow virus infections. Monographs in Virology 3:1–211
    [Google Scholar]
  16. Jamieson B. D., Somasundaram T., Ahmed R. 1991; Abrogation of tolerance to a chronic viral infection. Journal of Immunology 147:3521–3529
    [Google Scholar]
  17. Lehmann-Grube F. 1971; Lymphocytic choriomeningitis virus. Virology Monographs 10:1–173
    [Google Scholar]
  18. Lehmann-Grube F., Assmann U., Löliger C., Moskophidis D., Lohler J. 1985; Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in the clearance of lymphocytic choriomeningitis virus from spleens of mice. Journal of Immunology 134:608–615
    [Google Scholar]
  19. Leist T. P., Kohler M., Zinkernagel R. M. 1989; Impaired generation of antiviral cytotoxicity against lymphocytic choriomeningitis and vaccinia virus in mice treated with CD4-specific monoclonal antibody. Scandinavian Journal of Immunology 30:679–686
    [Google Scholar]
  20. Matloubian M., Somasundaram T., Kolhekar S. R., Selvakumar R., Ahmed R. 1990; Genetic basis of viral persistence: single amino acid change in the viral glycoprotein affects ability of lymphocytic choriomeningitis virus to persist in adult mice. Journal of Experimental Medicine 172:1043–1048
    [Google Scholar]
  21. Matloubian M., Kolhekar S. R., Somasundaram T., Ahmed R. 1993; Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. Journal of Virology 67:7340–7349
    [Google Scholar]
  22. Moskophidis D., Lehmann-Grube F. 1984; The immune response of the mouse to lymphocytic choriomeningitis virus. VI. Enumeration of antibody-producing cells in spleens during acute and persistent infection. Journal of Immunology 133:3366–3370
    [Google Scholar]
  23. Moskophidis D., Assmann Wischer U., Simon M. M., Lehmann-Grube F. 1987a; The immune response of the mouse to lymphocytic choriomeningitis virus. V. High numbers of cytolytic T lymphocytes are generated in the spleen during acute infection. European Journal of Immunology 17:937–942
    [Google Scholar]
  24. Moskophidis D., Cobbold S. P., Waldmann H., Lehmann-Grube F. 1987b; Mechanism of recovery from acute virus infection: treatment of lymphocytic choriomeningitis virus-infected mice with monoclonal antibodies reveals that Lyt-2+ T lymphocytes mediate clearance of virus and regulate the antiviral antibody response. Journal of Virology 61:1867–1874
    [Google Scholar]
  25. Moskophidis D., Lehmann-Grube F. 1989; Virus-induced delayed-type hypersensitivity reaction is sequentially mediated by CD8+ and CD4+ T lymphocytes. Proceedings of the National Academy of Sciences, USA 86:3291–3295
    [Google Scholar]
  26. Moskophidis D., Pircher H. P., Ciernik I., Odermatt B., Hengartner H., Zinkernagel R. M. 1992; Suppression of virus specific antibody production by CD8+ class I-restricted antiviral cytotoxic T cells in vivo. Journal of Virology 66:3661–3668
    [Google Scholar]
  27. Moskophidis D., Laine E., Zinkernagel R. M. 1993a; Peripheral clonal deletion of antiviral memory CD8+ T cells. European Journal of Immunology 23:3306–3311
    [Google Scholar]
  28. Moskophidis D., Lechner F., Pircher H. P., Zinkernagel R. M. 1993b; Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362:758–761
    [Google Scholar]
  29. Moskophidis D., Battegay M., Brundler M.-A., Laine M., Gresser I., Zinkernagel R. M. 1994a; Resistance of lymphocytic choriomeningitis virus to alpha/beta interferon and to gamma interferon. Journal of Virology 68:1951–1955
    [Google Scholar]
  30. Moskophidis D., Lechner F., Hengartner H., Zinkernagel R. M. 1994b; MHC class I and non MHC-linked capacity for generating an antiviral CTL response determines susceptibility to CTL exhaustion and establishment of virus persistence in mice. Journal of Immunology 152:4976–4983
    [Google Scholar]
  31. Nayersina R., Fowler P., Guilhot S., Missale G., Cerny A., Schlicht H. J., Vitiello A., Chesnut R., Person J. L., Redeker A. G. 1993; HLA A2-restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. Journal of Immunology 150:4659–4671
    [Google Scholar]
  32. Nowak M. A., Anderson R. M., McLean A. R., Wolfs T. F. W., Goudsmit J., May R. M. 1991; Antigenic diversity thresholds and the development of AIDS. Science 254:963–969
    [Google Scholar]
  33. Penna A., Chisari F. V., Bertoletti A., Missale G., Fowler P., Giuberti T., Fiaccadori F., Ferrari C. 1991; Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the Hepatitis B virus nucleocapsid antigen. Journal of Experimental Medicine 174:1565–1570
    [Google Scholar]
  34. Peralta L., Lehmann-Grube F. 1981; Biochemical composition of lymphocytic choriomeningitis virus interfering particles. Journal of General Virology 55:475–479
    [Google Scholar]
  35. Peters M., Vierling J., Gershwin M. E., Milich D., Chisari F. V., Hoofnagle J. H. 1991; Immunology and the liver. Hepatology 13:977–994
    [Google Scholar]
  36. Pfau C. J., Valenti J. K., Pevear D. C., Hunt K. D. 1982; Lymphocytic choriomeningitis virus killer T cells are lethal only in weakly disseminated murine infections. Journal of Experimental Medicine 156:79–89
    [Google Scholar]
  37. Phillips R. E., Rowland-Jones S., Nixon D. F., Gotch F. M., Edwards J. P., Ogunlesi A. O., Elvin J. G., Rothbard J. A., Bangham C. R. M., Rizza C. R., McMichael A. J. 1991; Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354:453–459
    [Google Scholar]
  38. Pircher H. P., Burki K., Lang R., Hengartner H., Zinkernagel R. M. 1989; Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342:559–561
    [Google Scholar]
  39. Pircher H. P., Moskophidis D., Rohrer U., Bürki K., Hengartner H., Zinkernagel R. M. 1990; Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo . Nature 346:629–633
    [Google Scholar]
  40. Pircher H. P., Rebai N., Groettrup M., Gregoire C., Speiser D. E., Patt Happ M., Palmer E., Zinkernagel R. M., Hengartner H., Malissen B. 1992; Preferential positive selection of V alpha 2 + CD8 + T cells in mouse strains expressing both H-2k and T cell receptor V alpha haplotypes: Determination with a V alpha 2-specific monoclonal antibody. European Journal of Immunology 22:399–104
    [Google Scholar]
  41. Rocha B., van Boehmer H. 1991; Peripheral selection of the cell repertoire. Science 251:1225–1228
    [Google Scholar]
  42. Romanowski V., Matsuura Y., Bishop D. H. L. 1985; Complete sequence of the S RNA of lymphocytic choriomeningitis virus (WE strain) compared to that of Pichinde arenavirus. Virus Research 3:101–114
    [Google Scholar]
  43. Salvato M., Shimomaye E., Southern P., Oldstone M. B. A. 1988; Virus-lymphocyte interactions. IV. Molecular characterization of LCMV Armstrong (CTL +) small genomic segment and that of its variant, Clone 13 (CTL –). Virology 164:517–522
    [Google Scholar]
  44. Salvato M., Borrow P., Shimomaye E., Oldstone M. B. A. 1991; Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. Journal of Virology 65:1863–1869
    [Google Scholar]
  45. Schönrich G., Kalinke U., Momburg F., Malissen M., Schmitt-Verhulst A. M., Malissen B., Hämmerling G. J., Arnold B. 1991; Downregulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65:293–304
    [Google Scholar]
  46. Schwartz R. H. 1990; A cell culture model for T lymphocyte clonal anergy. Science 248:1349–1356
    [Google Scholar]
  47. Taswell C. 1981; Limiting dilution assays for the determination of immunocompetent cell frequencies. Journal of Immunology 126:1614–1619
    [Google Scholar]
  48. Thomsen A. R., Marker O. 1989; MHC and non-MHC genes regulate elimination of lymphocytic choriomeningitis virus and antiviral cytotoxic T lymphocyte and delayed-type hypersensitivity mediating T lymphocyte activity in parallel. Journal of Immunology 142:1333–1341
    [Google Scholar]
  49. Webb S., Morris C., Sprent J. 1990; Extrathymic tolerance of mature T cells: Clonal elimination as a consequence of immunity. Cell 63:1249–1256
    [Google Scholar]
  50. Yoffe B., Nooman C. A. 1993; Progress and perspectives in human hepatitis B virus research. Progress in Medical Virology 40:107–140
    [Google Scholar]
  51. Zinkernagel R. M., Doherty P. C. 1979; MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T cell restriction-specificity, function and responsiveness. Advances in Immunology 27:52–142
    [Google Scholar]
  52. Zinkernagel R. M., Leist T. P., Hengartner H., Althage A. 1985; Susceptibility to lymphocytic choriomeningitis virus isolates correlates directly with early and high cytotoxic T cell activity, as well as with footpad swelling reaction, and all three are regulated by H-2D. Journal of Experimental Medicine 162:2125–2141
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-76-2-381
Loading
/content/journal/jgv/10.1099/0022-1317-76-2-381
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error