1887

Abstract

The herpes simplex virus type 1 (HSV-1) polypeptides encoded by genes UL26 and UL26.5 are thought to form a scaffold around which the capsid shell assembles. The UL26 gene specifies a proteinase that cleaves both itself and the UL26.5 gene product. To study the structure and function of the UL26 and UL26.5 gene products, the proteins were expressed in ceils infected with recombinant baculoviruses containing the genes under the control of the polyhedrin promoter. Both polypeptides were made in large amounts, approaching the levels of polyhedrin protein expressed in wild-type baculovirus. The UL26 polypeptide behaved in a similar manner to the protein made in HSV-l-infected cells, cleaving itself rapidly into the capsid proteins VP21 and VP24 and converting the UL26.5 product more slowly into the capsid protein VP22a. The results of immuno-blot analysis using antisera specific for the amino-terminal region of the UL26 polypeptide suggested that both the first and second ATGs in the UL26 open reading frame were recognized as translational start signals but the first ATG was the preferred initiation codon as is the case in HSV-l-infected cells. Electron microscopic examination of thin section preparations of cells infected with both the UL26.5- and UL26- recombinant baculoviruses revealed the presence of large numbers of small spherical particles, often arranged in a semi-crystalline array. These clusters of scaffold-like particles were not present in cells infected with UL26- recombinant baculovirus but were observed occasionally in UL26.5-recombinant baculovirus-infected cells. The results suggest that the proteinase, in the absence of other HSV capsid proteins, stimulates the formation of large numbers of scaffold-like particles present either as semi-crystalline arrays or as dispersed structures.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-9-2355
1994-09-01
2022-08-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/9/JV0750092355.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-9-2355&mimeType=html&fmt=ahah

References

  1. Addison C., Rixon F. J., Palfreyman J. W., O’Hara M., Preston V. G. 1984; Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology 138:246–259
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature; London: 310207–211
    [Google Scholar]
  3. Baker T. S., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. 1990; Three dimensional structures ofmaturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. Journal of Virology 64:563–573
    [Google Scholar]
  4. Bishop D. H. L. 1992; Baculovirus expression vectors. Seminars in Virology 3:253–264
    [Google Scholar]
  5. Braum E. Z., Bebernitz G. A., Hulmes J. D., Muzithras V. P., Jones T. R., Glutzman Y. 1993; Expression and analysis of the human cytomegalovirus UL80-encoded protease: identification of autoproteolytic sites. Journal of Virology 67:497–506
    [Google Scholar]
  6. Brown M., Faulkner P. 1977; A plaque assay for nuclear polyhedrosis viruses using a solid overlay. Journal of General Virology 36:361–364
    [Google Scholar]
  7. Brown M. S., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  8. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchinson C. A.III Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of the sequence of cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154:129–173
    [Google Scholar]
  9. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  10. Davison M. D., Rixon F. J., Davison A. J. 1992; Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. Journal of General Virology 73:2709–2713
    [Google Scholar]
  11. Deckman I. C., Hagen M., McCann P. J.III 1992; Herpes simplex type 1 protease expressed in Escherichia coli exhibits autoprocessing and specific cleavage of the ICP35 assembly protein. Journal of Virology 66:7362–7367
    [Google Scholar]
  12. Dilanni C. L., Drier D. A., Deckman I. C., McCann P. J.III Liu F., Roizman B., Colonno R. J., Cordingley M. G. 1993; Identification of the herpes simplex virus-1 protease cleavage sites by direct sequence analysis of autoproteolytic cleavage products. Journal of Biological Chemistry 268:2048–2051
    [Google Scholar]
  13. Gibson W., Roizman R. 1972; Proteins specified by herpes simplex virus. VIII. Characterization and composition of multiple capsid forms of subtypes 1 and 2. Journal of Virology 10:1071–1074
    [Google Scholar]
  14. Gibson W., Marcy A. I., Comolli J. C., Lee J. 1990; Identification of precursor to cytomegalovirus capsid assembly protein and evidence that processing results in the loss of its carboxy-terminal end. Journal of Virology 64:1241–1249
    [Google Scholar]
  15. Griffin A. M. 1990; The complete sequence of the capsid p40 gene from infectious laryngotracheitis virus. Nucleic Acids Research 18:3664
    [Google Scholar]
  16. Kitts P. A., Ayres M. D., Possee R. D. 1990; .Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic Acids Research 18:5667–5672
    [Google Scholar]
  17. Liu F., Roizman B. 1991a; The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. Journal of Virology 65:206–212
    [Google Scholar]
  18. Liu F., Roizman B. 1991b; The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. Journal of Virology 65:5149–5156
    [Google Scholar]
  19. Liu F., Roizman B. 1992; Differentiation of multiple domains in the herpes simplex virus 1 protease encoded by the UL26 gene. Proceedings of the National Academy of Sciences, U.S.A 89:2076–2080
    [Google Scholar]
  20. Liu F., Roizman B. 1993; Characterization of the protease and other products of the amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. Journal of Virology 67:1300–1309
    [Google Scholar]
  21. Livingstone C., Jones I. 1989; Baculovirus expression vectors with single strand capability. Nucleic Acids Research 17:2366
    [Google Scholar]
  22. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  23. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  24. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus- induced polypeptides. Journal of Virology 28:624–642
    [Google Scholar]
  25. Newcomb W. W., Brown J. C. 1989; Use of Ar+ plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. Journal of Virology 63:4697–4702
    [Google Scholar]
  26. Newcomb W. W., Brown J. C. 1991; Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. Journal of Virology 65:613–620
    [Google Scholar]
  27. Newcomb W. W., Brown J. C., Booy F. P., Steven A. C. 1989; Nucleocapsid mass and capsomer protein stoichiometry in equine herpesvirus 1: scanning transmission electron microscopic study. Journal of Virology 63:3777–3783
    [Google Scholar]
  28. Nicholson P. 1992 Analysis offour capsid protein genes of HSV-1 Ph.D. thesis University of Glasgow;
    [Google Scholar]
  29. Person S., Laquerre S., Desai P., Hempel J. 1993; The herpes simplex virus type 1 capsid protein, VP21, originates within the UL26 open reading frame. Journal of General Virology 74:2269–2273
    [Google Scholar]
  30. Preston V. G., Coates J. A. V., Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of viral DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  31. Preston V. G., Rixon F. J., McDougall I. M., McGregor M., Al-Kobaisi M. F. 1992; Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virology 186:87–98
    [Google Scholar]
  32. Rixon F. J., Cross A. M., Addison C., Preston V. G. 1988; The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. Journal of General Virology 69:2879–2891
    [Google Scholar]
  33. Stow N. D. 1992; Herpes simplex virus type 1 origin-dependent DNA replication in insect cells using recombinant baculoviruses. Journal of General Virology 73:313–321
    [Google Scholar]
  34. Tatman J. D., Preston V. G., Nicholson P., Elliott R. M., Rixon F. J. 1994; Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. Journal of General Virology 75:1101–1113
    [Google Scholar]
  35. Telford E., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, U.S.A 76:4350–4354
    [Google Scholar]
  37. Van Der Wilk F., Van Lent J. W. M., Vlak J. M. 1987; Immunogold detection of polyhedrin, plO and virion antigens in Autographa californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cells. Journal of General Virology 68:2615–2623
    [Google Scholar]
  38. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. 1977; The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13:213–217
    [Google Scholar]
  39. Weinheimer S. P., McCann P. J.III O’Boyle D. R.II Stevens J. T., Boyd B. A., Drier D. A., Yamanaka G. A., DiIanni C. L., Deckman I. C., Cordingley M. G. 1993; Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. Journal of Virology 67:5813–5822
    [Google Scholar]
  40. Welch A. R., Woods A. S., McNally L. M., Cotter J. R., Gibson W. 1991; A herpesvirus maturational proteinase, assem- blin: identification of its gene, putative active site domain, and cleavage site. Proceedings of the National Academy of Sciences, U.S.A 88:10792–10796
    [Google Scholar]
  41. Welch A. R., McNally L. M., Hall M. R. T., Gibson W. 1993; Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine. Journal of Virology 67:7360–7372
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-9-2355
Loading
/content/journal/jgv/10.1099/0022-1317-75-9-2355
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error