1887

Abstract

The mechanism for down-regulation of E1a expression by products encoded in the E3 transcription unit of human adenovirus types 2 and 5, that occurs in infected L929 cells, has been investigated further. We show that the phenomenon occurs in different mouse cells and also in some human cells suggesting that the observations have relevance to natural human infections. We also provide evidence that probably all viral proteins are down-regulated by E3 products, although to different extents, but that host proteins are unaffected. Whereas E1a protein levels and synthesis are reduced in the presence of E3 products, E1a protein half-life and polysomal Ela RNA levels and size distribution are not. These data suggest that E3 products down-regulate E1a protein levels by interfering with the translation of E1a- specific mRNA. Studies were additionally carried out with mutant adenoviruses containing different defects in the E3 transcription unit. Based on these studies it seems likely that the E3 14·5K and 10·4K proteins are crucially involved in Ela down-regulation. Our data are discussed in terms of strategies for immune evasion by group C human adenoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-8-1943
1994-08-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/8/JV0750081943.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-8-1943&mimeType=html&fmt=ahah

References

  1. Andersson M., Paabo S., Nilsson T., Peterson P. A. 1985; Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 43:215–222
    [Google Scholar]
  2. Andersson M. P., Mcmichael A., Peterson P. A. 1987; Reduced allorecognition of adenovirus-2 infected cells. Journal of Immunology 138:3960–3966
    [Google Scholar]
  3. Bellgrau D., Walker T. A., Cook J. L. 1988; Recognition of adenovirus Ela gene products on immortalized cell surfaces by cytotoxic T lymphocytes. Journal of Virology 62:1513–1519
    [Google Scholar]
  4. Bellett A. J. D., Li P., David E. T., Mackay E. J., Braithwaite A. W., Cutt J. R. 1985; Control functions of adenovirus transformation region E1A gene products in rat and human cells. Molecular and Cellular Biology 5:1933–1939
    [Google Scholar]
  5. Braithwaite A. W., Jenkins J. R. 1989; Ability OF p53 and the adenovirus Elb 58-kilodalton protein to form a complex is determined by p53. Journal of Virology 63:1792–1799
    [Google Scholar]
  6. Braithwaite A. W., Cheetham B. F., Li P., Parish C. R., Waldron-Stevens L. K., Bellett A. J. 1983; Adenovirus induces alterations of the cell growth cycle: a requirement for expression of E1a but not E1b. Journal of Virology 45:192–199
    [Google Scholar]
  7. Burgert H. G., Kvist S. 1985; An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41:987–997
    [Google Scholar]
  8. Burgert H., Maryanski J. L., Kvist S. 1987; “E3/19k” protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proceedings of the National Academy of Sciences, U.S.A 84:1356–1360
    [Google Scholar]
  9. Carlin C. R., Tollefson A. E., Brady H. A., Hoffman B. L., Wold W. S. M. 1989; Epidermal growth factor receptor is down regulated by a 10,400 MW protein encoded by the E3 region of adenovirus. Cell 57:135–144
    [Google Scholar]
  10. Chow L. T., Gelinas R. E., Broker T. R., Roberts R. J. 1977; An amazing sequence arrangement at the 5′ ends of the adenovirus 2 messenger RNA. Cell 12:1–8
    [Google Scholar]
  11. Cowan N. J., Dobner P. R., Fuchs E. V., Cleveland D. W. 1983; Expression of human alpha-tubulin: interspecies conservation of 3′ untranslated regions. Molecular and Cellular Biology 3:1738–1745
    [Google Scholar]
  12. Darnell J., Lodish H., Baltimore D. 1986 Molecular Cell Biology pp. 305–369 New York: Scientific American Books;
    [Google Scholar]
  13. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  14. Ginsberg H. S., Lundholm-Beauchamp U., Horswood R. L., Pernis B., Wold W, Chanock R. M., Prince G. A. 1989; Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proceedings of the National Academy of Sciences, U.S.A 86:3823–3827
    [Google Scholar]
  15. Ginsberg H. S., Moldawer L., Sehgal P., Redington M., Kilian P., Chanock R., Prince G. 1991; A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proceedings of the National Academy of Sciences, U.S.A 88:1651–1655
    [Google Scholar]
  16. Gooding L. R., Elmore L. W., Tollefson A. E., Brady H. A., Wold W. S. M. 1988; A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53:341–346
    [Google Scholar]
  17. Gooding K., Ranheim T., Tollefson A., Aquino L., Duerksen-Hughes P., Horton T., Wold W. 1991a; The 10·4K and 14·5K proteins encoded by region E3 of adenovirus together protect many but not all mouse cell lines against lysis by tumor necrosis factor. Journal of Virology 65:4114–4123
    [Google Scholar]
  18. Gooding L., Aquino L., Duerksen-Hughes P., Day D., Horton T., Yei S., Wold W. 1991b; The E1b 19K protein of group C adenoviruses prevents cytolysis by tumor necrosis factor of human cells but not mouse cells. Journal of Virology 65:3083–3094
    [Google Scholar]
  19. Halbert D., Cutt J. R., Shenk T. 1985; Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. Journal of Virology 56:250–257
    [Google Scholar]
  20. Harlow E., Crawford L. V., Pim D. C., Williamson N. M. 1981; Monoclonal antibodies specific for simian virus 40 tumor antigens. Journal of Virology 39:861–869
    [Google Scholar]
  21. Horwitz M. S. 1990; Adenoviruses. In Virology, 2nd edn. pp. 1723–1740 Fields B. N., Knipe D. M. Edited by New York: Raven Press;
    [Google Scholar]
  22. Jones N. C., Shenk T. 1978; Isolation of deletion and substitution mutants of adenovirus type 5. Cell 13:181–188
    [Google Scholar]
  23. Jones N. C., Shenk T. 1979; Isolation of adenovirus 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17:683–689
    [Google Scholar]
  24. Kast W. M., Offringa R., Peters P. J., Voordouw A. C., Meloen R. H., van der Eb A. J., Melief C. J. 1989; Eradication of adenovirus El-induced tumors by Ela-specific cytotoxic T lymphocytes. Cell 59:603–614
    [Google Scholar]
  25. Krajcsi P., Tollefson A. E., Anderson C. W., Wold W. S. M. 1992a; The adenovirus E3 14·5-kilodalton protein, which is required for down-regulation of the epidermal growth factor receptor and prevention of tumor necrosis factor cytolysis, is an integral membrane protein oriented with its C-terminus in the cytoplasm. Journal of Virology 66:1665–1673
    [Google Scholar]
  26. Krajcsi P., Tollefson A. E., Anderson C. W., Stewart A. R., Carlin C. R., Wold W. S. M. 1992b; The E3 10·4K protein of adenovirus is an integral membrane protein that is partially cleaved between A1a22 and A1a23 and has a Ccyt orientation. Virology 187:131–144
    [Google Scholar]
  27. Kvist S., Ostberg L., Persson H., Philipson L., Peterson P. A. 1978; Molecular association between transplantation antigens and cell surface antigens in adenovirus-transformed cell lines. Proceedings of the National Academy of Sciences, U.S.A 75:5674–5678
    [Google Scholar]
  28. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  29. Mechler B., Rabbitts T. H. 1981; Membrane-bound ribosomes of myeloma cells IV. mRNA complexity of free and membrane-bound polysomes. Journal of Cell Biology 88:29–36
    [Google Scholar]
  30. Müllbacher A., Bellett A. J. D., Tha Hla R. 1989; The murine cellular immune response to adenovirus type 5. Immunology and Cell Biology 67:31–39
    [Google Scholar]
  31. Nelson C. C. 1990 Adenovirus gene expression in F9 embryonal carcinoma cells Ph.D. thesis Australian National University:
    [Google Scholar]
  32. Palmiter R. D. 1974; Magnesium precipitation of ribonucleoprotein complexes: expedient techniques for the isolation of undegradedpolysomes and messenger ribonucleic acid. Biochemistry 13:3606–3616
    [Google Scholar]
  33. Rawle F. C., Tollefson A. E., Wold W. S. M., Gooding L. R. 1989; Mouse anti-adenovirus cytotoxic T lymphocytes: inhibition of lysis by E3 gp19k but not E3 14·7k. Journal of Immunology 143:2031–2037
    [Google Scholar]
  34. Thimmapaya B., Weinberger C., Schneider R. J., Shenk T. 1982; Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31:543–551
    [Google Scholar]
  35. Tollefson A. E., Krajcsi P., Yei S., Carlin C., Wold W. S. M. 1990a; 10,400-molecular weight membrane protein is coded by region E3 of adenovirus. Journal of Virology 64:794–801
    [Google Scholar]
  36. Tollefson A. E., Krajcsi P., Pursley M. H., Gooding L. R., Wold W. S. M. 1990b; A 14,500 MW protein is coded by region E3 of group C human adenoviruses. Virology 175:19–29
    [Google Scholar]
  37. Tollefson A. E., Stewart A. R., Yei S., Saha S. K., Wold W. S. M. 1991; The 10,400 and 14,500 dalton proteins encoded by region E3 of adenovirus form a complex and function together to down-regulate the epidermal growth factor receptor. Journal of Virology 65:3095–3105
    [Google Scholar]
  38. Urbanelli D., Sawada Y., Raskova J., Jones N. C., Shenk T., Raska K. 1989; C-terminal domain of the adenovirus Ela oncogene product is required for induction of cytotoxic T lymphocytes and tumor-specific transplantation of immunity. Virology 173:357–366
    [Google Scholar]
  39. Whyte P., Buchkovich K. J., Horowitz J. M., Friend S. H., Raybuck M., Weinberg R. A., Harlow E. 1988; Association between an oncogene and an anti-oncogene: the adenovirus E1 A proteins bind to the retinoblastoma gene product. Nature; London: 334124–129
    [Google Scholar]
  40. Wold W. S. M., Gooding L. R. 1991; Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184:1–8
    [Google Scholar]
  41. Wold W. S. M., Cladaras C., Deutscher S. L., Kapoor Q. S. 1985; The 19-kDa glycoprotein coded by region E3 of adenovirus: purification, characterization, and structural analysis. Journal of Biological Chemistry 260:2424–2431
    [Google Scholar]
  42. Wold W. S. M., Deutscher S. L., Takemori N., Bhat B. M., Magie S. C. 1986; Evidence that AGUAUAUGA and CCAAGAUGA initiate translation in the same mRNA in region E3 of adenovirus. Virology 148:168–180
    [Google Scholar]
  43. Zhang X. L., Bellett A. J. D., Tha Hla R., Braithwaite A. W., Mullbacher A. 1991; Adenovirus type 5 E3 gene products interfere with the expression of the cytolytic T cell immunodominant E1a antigen. Virology 180:199–206
    [Google Scholar]
  44. Zhang X. L., Müllbacher A., Braithwaite A. W. 1992; Down-regulation of E1a expression by E3 gene products in group C adenoviruses. Immunology and Cell Biology 70:65–71
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-8-1943
Loading
/content/journal/jgv/10.1099/0022-1317-75-8-1943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error