1887

Abstract

Two pairs of oligonucleotide primers were designed that specifically amplified regions of the classical swine fever virus genome. These products, corresponding to a 671 bp portion of the genes encoding the El and E2 (gp33 and gp55) proteins and a 1090 bp portion of the putative polymerase gene, were amplified from eight virus isolates which had been responsible for a series of classical swine fever outbreaks in Italy involving both domestic pigs and wild boar. For each virus the fragments were partially sequenced to give 475 bp of the E1/E2 glycoprotein and 212 bp of the putative polymerase gene sequences. The data from each set of fragments were compared with one another and with reference strains. This allowed us confidently to assign most of the viruses to one of three subgroups. An analysis of the same viruses with a panel of monoclonal antibodies was much less informative. The subgrouping of the isolates suggested that, in this region of Italy, there had been at least two separate introductions of classical swine fever over a 7 year period and that virus had been transmitted between domestic pigs and wild boar. A consensus nucleotide sequence derived from the glycoprotein fragments of all the viruses examined revealed conservation at the wobble position of some codons.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-12-3461
1994-12-01
2021-10-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/12/JV0750123461.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-12-3461&mimeType=html&fmt=ahah

References

  1. Becher P., Shannon A. D., Tautz N., Thiel H. J. 1994; Molecular characterization of border disease virus, a pestivirus from sheep. Virology 198:542–551
    [Google Scholar]
  2. Beck E., Strohmaier K. 1987; Subtyping of European foot-and- mouth disease virus strains by nucleotide sequence determination. Journal of Virology 61:1621–1629
    [Google Scholar]
  3. Berry E. S., Lewis T. L., Ridpath J. R., Evermann J. F., Rupnow B. A., Qi F. 1993; Genomic comparison of ruminant pestiviruses. Proceedings of the Second Symposium on Ruminant Pestiviruses, Annecy1–3 October, 1992
    [Google Scholar]
  4. Collett M. S. 1992; Molecular genetics of pestiviruses. Comparative immunology. Microbiology and Infectious Diseases 15:145–154
    [Google Scholar]
  5. Collett M. S., Larson R., Gold C., Strick D., Anderson D. K., Purchio A. F. 1988; Molecular cloning and nucleotide sequence analysis of the pestivirus bovine viral diarrhea virus. Virology 165:191–199
    [Google Scholar]
  6. Collett M. S., Moennig V., Horzinek M. C. 1989; Recent advances in pestivirus research. Journal of General Virology 70:253–266
    [Google Scholar]
  7. De Moerlooze L., Lecomte C., Brown-Shimmer S., Schmetz D., Guiot C., Vandenbergh D., Allaer D., Rossius M., Chappuis G., Dina D., Renard A., Martial J. A. 1993; Nucleotide sequence of the bovine viral diarrhoea virus Osloss strain: comparison with related viruses and identification of specific DNA probes in the 5′ untranslated region. Journal of General Virology 74:1433–1438
    [Google Scholar]
  8. Deng R., Brock K. V. 1992; Molecular cloning and nucleotide sequencing of a pestivirus genome, noncytopathic bovine viral diarrhea virus strain SD-1. Virology 191:867–879
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Edwards S., Sands J. J. 1990; Antigenic comparisons of hog cholera virus isolates from Europe, America and Asia using monoclonal antibodies. Deutsche tierarztliche Wochenschrift 97:79–81
    [Google Scholar]
  11. Edwards S., Sands J. J., Harkness J. W. 1988; The application of monoclonal antibody panels to characterize pestivirus isolates from ruminants in Great Britain. Archives of Virology 102:197–206
    [Google Scholar]
  12. Edwards S., Moennig V., Wensvoort G. 1991; The development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from other pestiviruses. Veterinary Microbiology 29:101–108
    [Google Scholar]
  13. Felsenstein J. 1989; PF1YLIP: phylogenetic inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  14. Ferrari G., Rutili D., Autorino G. L., Cardeti G., Amaddeo D. 1993; Recenti focolai di peste suina classica mel Lazaro sostenuti da stipiti virali a bassa virulenza. XLVII Convegno Nazionale S.I.S. Vet Riccione (FO) Italy 29 September to 2 October, 1993
    [Google Scholar]
  15. Francki R. I. B., Fauqet C. M., Knudson D. L., Brown F.editor 1991; Classification and Nomenclature of Viruses. Fifth Report of the International Committee on the Taxonomy of Viruses. Archives of Virology, Supplementum 2:223–233
    [Google Scholar]
  16. Ho L., Chan S.-Y., Chow V., Chong T., Tay S.-K., Villa L. L., Bernard H.-U. 1991; Sequence variation of human papillomavirus type 16 in clinical samples permit verification and extension of epidemiological studies and construction of a phylogenetic tree. Journal of Clinical Microbiology 29:1765–1772
    [Google Scholar]
  17. Katz J. B., Ridpath J. F., Bolin S. R. 1993; Presumptive diagnostic differentiation of hog cholera virus from bovine viral diarrhea and border disease viruses by using a cDNA nested amplification approach. Journal of Clinical Microbiology 31:565–568
    [Google Scholar]
  18. Lowings J. P., Paton D. J. 1993; A PCR approach to the molecular study of pestiviruses. Proceedings of the Second Symposium on Ruminant Pestiviruses, Annecy1–3 October, 1992
    [Google Scholar]
  19. Meyers G., Rümenapf T., Thiel H.-J. 1989; Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171:555–567
    [Google Scholar]
  20. Moennig V., Plagemann G. W. 1992; The pestivirus. In Advances in Virus Research pp 53–98 Maramorosch K., Murphy F. A., Shatkin A. J. Edited by San Diego: Academic Press;
    [Google Scholar]
  21. Moormann R. J. M., Warmerdam P. A. M., Van Der Meer B., Schaaper W. M. M., Wensvoort G., Hulst M. M. 1990; Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein El. Virology 177:184–198
    [Google Scholar]
  22. Muyldermans G., Sangabriel M. C., Caij A., De Smet A., Hamers R. 1993; Polymerase chain reaction-mediated cloning and in vitrotranslation of the genes for the structural proteins of hog cholera virus. Archives of Virology 132:429–435
    [Google Scholar]
  23. Paton D. J., Sands J. J., Edwards S. 1994; Border disease virus: delineation by monoclonal antibodies. Archives of Virology 135:241–252
    [Google Scholar]
  24. Renard A., Dina D., Martial J. A. 1987; Vaccines and diagnostics derived from bovine diarrhoea virus. European Patent Application Number 86870095.6. Publication 020867214January 1987
    [Google Scholar]
  25. Rico-Hesse R. 1990; Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174:479–493
    [Google Scholar]
  26. Roehe P. M., Woodward M. J., Edwards S. 1992; Characterisation of p20 gene sequences from border disease-like pestivirus isolated from pigs. Veterinary Microbiology 33:231–238
    [Google Scholar]
  27. Rota P. A., Hemphill M. L., Whistler T., Regnery H. L., Kendal A. P. 1992; Antigenic and genetic characterization of the haemagglutinins of recent cocirculating strains of influenza B virus. Journal of General Virology 73:2737–2742
    [Google Scholar]
  28. Rümenapf T., Unger G., Strauss J. H., Thiel H.-J. 1993; Processing of the envelope glycoproteins of pestiviruses. Journal of Virology 67:3288–3294
    [Google Scholar]
  29. Salminen M., Nykänen A., Brummer-Korvenkontio H., Kan-Tanen M. L., Liitsola K., Leinikki P. 1993; Molecular epidemiology of HIV-1 based on phylogenetic analysis of in vivogag p7/p9 direct sequences. Virology 195:185–194
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 In Molecular Cloning: a Laboratory Manual, 2nd edn.. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Snowdon W. A., French E. L. 1968; The bovine mucosal disease-swine fever virus complex in pigs. Australian Veterinary Journal 44:179–184
    [Google Scholar]
  32. Stallcup M. R., Washington L. D. 1983; Region-specific initiation of mouse mammary tumor virus RNA synthesis by endogenous RNA polymerase II in preparations of cell nuclei. Journal of Biological Chemistry 258:2802–2807
    [Google Scholar]
  33. Van Rijn P. A., Van Gennip H. G. P., De Meijer E. J., Moremann R. J. M. 1993; . Journal of General Virology 74:2053–2060
    [Google Scholar]
  34. Vilček Š., Herring A. J., Herring J. A., Nettleton P. A., Lowings J. P., Paton D. J. 1994; Pestiviruses isolated from pigs, cattle and sheep can be allocated into three genogroups using polymerase chain reaction and restriction endonuclease analysis. Archives of Virology in press
    [Google Scholar]
  35. Wensvoort G., Terpstra C., Boonstra J., Bloemraad M., VanZaane D. 1986; Production of monoclonal antibodies against swine fever virus and their use in laboratory diagnosis. Veterinary Microbiology 12:101–108
    [Google Scholar]
  36. Wirz B., Tratschin J.-D., Müller H. K., Mitchel D. B. 1993; Detection of hog cholera virus and differentiation from other pestiviruses by polymerase chain reaction. Journal of Clinical Microbiology 31:1148–1154
    [Google Scholar]
  37. Yu M., Mccoll K. A., Gould A. R. 1993; Cloning and nucleotide sequence determination of the major envelope glycoprotein (gp55) gene of hog cholera virus (Weybridge). Virus Research 28:203–208
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-12-3461
Loading
/content/journal/jgv/10.1099/0022-1317-75-12-3461
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error