1887

Abstract

The gp85 envelope glycoprotein of Epstein-Barr virus (EBV) has a role in the molecular mechanism of infection, enabling fusion between the viral and host cell envelopes, a role in common with the homologous gH glycoproteins in other herpesviruses. A glutathione transferase bacterial fusion protein (GST85N-S) was generated, containing 178 amino acids from the C terminus of gp85 and including a known gp85 linear epitope. A panel of EBV-positive human antisera contained no antibodies to linear epitopes presented on the purified GST85N-S protein, indicating that primary protein structure in this region of gp85 is not a B cell target. This bacterial fusion protein was used to raise a rabbit monospecific polyclonal antiserum capable of detecting gp85 in a Western blot. The majority of recombinant baculovirus-expressed gp85 obtained from cell extracts prepared with SDS appeared on Western blots as heterogeneous high protein aggregates and consistently included 84K, 81K and 70K bands. Recombinant gp85 aggregation was increased by boiling the sample prior to gel electrophoresis. The 84K and 81K proteins were completely sensitive to endoglycosidase H treatment, indicating that these glycosylated species did not undergo further post-translational processing. Immunofluorescence studies revealed that recombinant gp85 was not transported to the insect cell surface. It reacted only with antibodies recognizing denatured gp85 and not with antibody to native gp85. Therefore expression of the gene encoding gp85, BXLF2, alone in the baculovirus expression system is insufficient for the synthesis of a correctly transported, processed, folded and antigenically native form of recombinant gp85.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-11-3241
1994-11-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/11/JV0750113241.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-11-3241&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989 Current Protocols in Molecular Biology 2 New York: John Wiley;
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature; London: 310207–211
    [Google Scholar]
  3. Browne H., Baxter V., Minson T. 1993; Analysis of protective immune responses to the glycoprotein H-glycoprotein L complex of herpes simplex virus type 1. Journal of General Virology 74:2813–2817
    [Google Scholar]
  4. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C., Bankier A. T., Tomlinson P., Barrell B. A., Brown T. C. 1988; Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. Journal of Virology 62:1416–1422
    [Google Scholar]
  5. Deacon E. M., Pallesen G., Niedobitek G., Crocker J., Brooks L., Rickinson A. B., Young L. S. 1993; Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. Journal of Experimental Medicine 177:339–349
    [Google Scholar]
  6. Edson C. M., Thorley-Lawson D. A. 1983; Synthesis and processing of the three major envelope glycoproteins of Epstein-Barr virus. Journal of Virology 46:547–556
    [Google Scholar]
  7. Forrester A. J., Sullivan V., Simmons A., Blacklaws B. A., Smith G. L., Nash A. A., Minson A. C. 1991; Induction of protective immunity with antibody to herpes simplex virus type 1 glycoprotein H (gH) and analysis of the immune response to gH expressed in recombinant vaccinia virus. Journal of General Virology 72:369–375
    [Google Scholar]
  8. Ghiasi H., Nesburn A. B., Wechsler S. L. 1991; Cell surface expression of herpes simplex virus type 1 glycoprotein H in recombinant baculovirus-infected cells. Virology 185:187–194
    [Google Scholar]
  9. Ghiasi H., Kaiwar R., Nesburn A. B., Wechsler S. L. 1992; Baculovirus-expressed glycoprotein H of herpes simplex virus type 1 (HSV-1) induces neutralizing antibody and delayed type hypersensitivity responses, but does not protect immunized mice against lethal HSV-1 challenge. Journal of General Virology 73:719–722
    [Google Scholar]
  10. Ghiasi H., Kaiwar R., Nesburn A. B., Slanina S., Wechsler S. L. 1994; Expression of seven herpes simplex virus type 1 glycoproteins (gB, gC, gD, gE, gG, gH and gl): comparative protection against lethal challenge in mice. Journal of Virology 68:2118–2126
    [Google Scholar]
  11. Gilbert R., Ghosh K., Rasile L., Ghosh H. P. 1994; Membrane anchoring domain of herpes simplex virus glycoprotein gB is sufficient for nuclear envelope localization. Journal of Virology 68:2272–2285
    [Google Scholar]
  12. Gompels U. A., Minson A. C. 1989; Antigenic properties and cellular localization of herpes simplex virus glycoprotein gH synthesized in a mammalian expression system. Journal of Virology 63:4744–4755
    [Google Scholar]
  13. Griffin B. E., Karran L. 1983; Immortalization of monkey epithelial cells by specific fragments of Epstein-Barr virus DNA. Nature; London: 30978–82
    [Google Scholar]
  14. Haddad R. S., Hutt-Fletcher L. M. 1989; Depletion of glycoprotein gp85 from virosomes made with Epstein-Barr virus proteins abolishes their ability to fuse with virus receptor-bearing cells. Journal of Virology 63:4998–5005
    [Google Scholar]
  15. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Hartman J., Daram P., Frizzell R. A., Rado T., Benos D. J., Sorscher E. J. 1992; Affinity purification of insoluble recombinant fusion proteins containing glutathione-S-transferase. Biotechnology and Bioengineering 39:828–832
    [Google Scholar]
  17. Heineman T., Gong M., Sample J., Keiff E. 1988; Identification of the Epstein-Barr virus gp85 gene. Journal of Virology 62:1101–1107
    [Google Scholar]
  18. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primrac S., Goldsmith K., Minson A. C., Johnson D. C. 1992; A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. Journal of Virology 66:2240–2250
    [Google Scholar]
  19. Kaye J. F., Gompels U. A., Minson A. C. 1992; Glycoprotein H of human cytomegalovirus (HCMV) forms a stable complex with the HCMV UL115 gene product. Journal of General Virology 73:2693–2698
    [Google Scholar]
  20. Kuroda K., Geyer H., Geyer R., Doerfler W., Klenk H. -D. 1990; The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology 174:418–429
    [Google Scholar]
  21. Liu D. X., Gompels U. A., Nicholas J., Lelliott C. 1993a; Identification and expression of the human herpesvirus 6 glycoprotein H and interaction with an accessory 40K glycoprotein. Journal of General Virology 74:1847–1857
    [Google Scholar]
  22. Liu D. X., Gompels U. A., Foa-Tomasi L., Campadelli-Fiume G. 1993b; Human herpesvirus-6 glycoprotein H and L homologs are components of the gp100 complex and the gH external domain is the target of neutralizing monoclonal antibodies. Virology 197:12–22
    [Google Scholar]
  23. Lucknow V. A., Summers M. D. 1989; High level expression of nonfused foreign genes with Autographa californica nuclear poly-hedrosis virus expression vectors. Virology 170:31–39
    [Google Scholar]
  24. Miller N., Hutt-Fletcher L. 1988; A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. Journal of Virology 62:2366–2372
    [Google Scholar]
  25. Morgan A. J. 1992; The development of Epstein-Barr virus vaccines. Vaccine 10:563–571
    [Google Scholar]
  26. North J. R., Morgan A. J., Epstein M. A. 1980; Observations on the EB virus envelope and virus-determined membrane antigen (MA) polypeptides. International Journal of Cancer 26:231–240
    [Google Scholar]
  27. Oba D. E., Hutt-Fletcher L. 1988; Induction of antibodies to the Epstein-Barr virus glycoprotein gp85 with a synthetic peptide corresponding to a sequence in the BXLF2 open reading frame. Journal of Virology 62:1108–1114
    [Google Scholar]
  28. Parkin D. M., Stjemsward J., Muir C. S. 1984; Estimates for the worldwide frequency of twelve major cancers. Bulletin of the World Health Organisation 62:163–182
    [Google Scholar]
  29. Roberts S. R., Ponce De Leon M., Cohen G. H., Eisenberg R. J. 1991; Analysis of the intracellular maturation of the herpes simplex virus type 1 glycoprotein gH in infected and transfected cells. Virology 184:609–624
    [Google Scholar]
  30. Roop C., Hutchinson L., Johnson D. C. 1993; A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells and its particles lack glycoprotein H. Journal of Virology 67:2285–2297
    [Google Scholar]
  31. Smith D. B., Johnson K. S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with gluta-thione-S-transferase. Gene 67:31–39
    [Google Scholar]
  32. Spaete R. R., Perot K., Scott P. I., Nelson J. A., Stinski M. F., Pachl C. 1993; Coexpression of truncated human cytomegalovirus gH with the UL115 gene product or the truncated human fibroblast growth factor receptor results in transport of gH to the cell surface. Virology 193:853–861
    [Google Scholar]
  33. Strnad B. C., Schuster T., Klein R., Hopkins R. F. III Witmer T., Neubauer R. H., Rabin H. 1982; Production and characterization of monoclonal antibodies against Epstein-Barr virus membrane antigen. Journal of Virology 41:258–264
    [Google Scholar]
  34. Strnad B. C., Adams M. R., Rabin H. 1983; Glycosylation pathways of two major Epstein-Barr virus membrane antigens. Virology 127:168–176
    [Google Scholar]
  35. Yaswen L. R., Stephens L. C., Davenport L. C., Hutt-Fletcher L. M. 1993; Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology 195:387–396
    [Google Scholar]
  36. Yeh J., Seals J. R., Murphy C. I., Van Halbeek H., Cummings R. D. 1993; Site-specific N-glycosylation and oligosaccharide structures of recombinant HIV-1 gpl20 derived from a baculovirus expression system. Biochemistry 32:11087–11099
    [Google Scholar]
  37. Young L. S., Rowe M. 1992; Epstein-Barr virus, lymphomas and Hodgkin’s disease. Seminars in Cancer Biology 3:273–284
    [Google Scholar]
  38. Zeng Y. 1985; Seroepidemiological studies on nasopharyngeal carcinoma in China. Advances in Cancer Research 44:121–138
    [Google Scholar]
  39. Zur Hausen H. 1991; Viruses in human cancers. Science 254:1167–73
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-11-3241
Loading
/content/journal/jgv/10.1099/0022-1317-75-11-3241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error