1887

Abstract

We have assessed the functional importance of the NTP-binding motif (NTBM) in the cowpea mosaic virus (CPMV) B-RNA-encoded 58K domain by changing two conserved amino acids within the consensus A and B sites (GKSRTGK500S and MDD545, respectively). Both Lys-500 to Thr and Asp-545 to Pro substitutions are lethal as mutant B-RNAs were no longer replicated in cowpea protoplasts. Transiently produced mutant proteins were not able to support trans-replication of CPMV M-RNA in cowpea protoplasts in contrast to transiently produced wild-type B proteins. Therefore loss of viral RNA synthesis was a result of a protein defect rather than an RNA template defect. Mutant B polyproteins were correctly processed and and the regulatory function of the 32K protein on processing of B proteins was not affected by these mutations. Since regulation of processing by the 32K protein depends on interaction with the 58K domain, the mutations in the NTBM apparently do not interfere with this interaction. The Asp-545 to Pro substitution left intact the binding properties of the 84K precursor of the 58K protein, with respect to ATP-agarose, whereas the Lys-500 to Thr substitution decreased the binding capacity of the 84K protein, suggesting that the Lys-500 residue is directly involved in ATP binding. The Lys-500 to Thr substitution in the 58K domain resulted in an altered distribution of viral proteins, which failed to aggregate into large cytopathic structures as observed in protoplasts infected with wild-type B-RNA. However viral proteins containing the Asp-545 to Pro substitution showed a normal distribution in protoplasts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-11-3167
1994-11-01
2022-05-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/11/JV0750113167.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-11-3167&mimeType=html&fmt=ahah

References

  1. Assink A. M., Swaans H., Van Kammen A. 1973; The localization of virus-specific double-stranded RNA of cowpea mosaic virus in subcellular fractions of infected Vigna leaves. Virology 53:341–355
    [Google Scholar]
  2. Blake M. S., Johnston K. H., Russel-Jones G. J., Gotschlich E. C. 1984; A rapid, sensitive method for detection of alkaline phosphate-conjugated antibody on Western blots. Analytical Biochemistry 136:175–179
    [Google Scholar]
  3. Bradley M. K., Smith T. F., Lathrop R. H., Livingston D. M., Webster T. A. 1987; Consensus topography in the ATP binding site of the simian virus 40 and polyoma virus large tumor antigens. Proceedings of the National Academy of Sciences, U.S.A 84:4026–4030
    [Google Scholar]
  4. Dever T. E., Glynias M. J., Merrick W. C. 1987; GTP-binding domain: three consensus sequence elements. Proceedings of the National Academy of Sciences, U.S.A 84:1814–1818
    [Google Scholar]
  5. De Vos A. M., Tong L., Milburn M. V., Matias P. M., Jancarik J., Noguchi S., Nishimura S., Miura K., Ohtsuka E., Kim S. H. 1988; Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science 239:888–893
    [Google Scholar]
  6. De Zoeten G. A., Assink A. M., Van Kammen A., Zabel P. 1974; Association of cowpea mosaic virus-induced double-stranded RNA with a cytopathological structure in infected cells. Virology 59:341–355
    [Google Scholar]
  7. Eggen R., Van Kammen A. 1988; RNA replication in comoviruses. In RNA Genetics 1 pp. 49–69 Ahlquist P., Holland J., Domingo E. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  8. Eggen R., Kaan A., Goldbach R., Van Kammen A. 1988; Cowpea mosaic virus RNA replication in crude membrane fractions from infected cowpea and Chenopodium amaranticolor. Journal of General Virology 69:2711–2720
    [Google Scholar]
  9. Eggen R., Verver J., Wellink J., De Jong A., Goldbach R., Van Kammen A. 1989; Improvements of the infectivity of in vitro transcripts from cloned cowpea mosaic virus cDNA: impact of terminal nucleotide sequences. Virology 173:447–455
    [Google Scholar]
  10. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  11. Franssen H., Goldbach R., Broekhuijsen M., Moerman M., Van Kammen A. 1982; Expression of middle-component RNA of cowpea mosaic virus: in vitro generation of a precursor to both capsid proteins by a bottom-component RNA-encoded protease from infected cells. Journal of Virology 41:8–17
    [Google Scholar]
  12. Franssen H., Leunissen J., Goldbach R., Lomonossoff G., Zimmern D. 1984a; Homologous sequences in non-structural proteins from cowpea mosaic virus and picornavirus. EM BO Journal 3:855–861
    [Google Scholar]
  13. Franssen H., Moerman M., Rezelman G., Goldbach R. 1984b; Evidence that the 32,000-Dalton protein encoded by bottom component RNA of cowpea mosaic virus is a proteolytic processing enzyme. Journal of Virology 50:183–190
    [Google Scholar]
  14. Franssen H., Goldbach R., Van Kammen A. 1984c; Translation of bottom component RNA of cowpea mosaic virus in reticulocyte lysate: faithful proteolytic processing of the primary translation product. Virus Research 1:39–49
    [Google Scholar]
  15. Fry D. C., Kuby S. A., Mildvan A. S. 1986; ATP-binding site of adenylate kinase; mechanistic implications of its homology with ras- encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proceedings of the National Academy of Sciences, U.S.A 83:907–911
    [Google Scholar]
  16. Garcia J. A., Schrijvers L., Tan A., Vos P., Wellink J., Goldbach R. 1987; Proteolytic activity of cowpea mosaic virus encoded 24K protein synthesized in Escherichia coli. Virology 159:67–75
    [Google Scholar]
  17. Goldbach R., Rezelman G., Van Kammen A. 1980; Independent replication and expression of B-component RNA of cowpea mosaic virus. Nature; London: 286297–300
    [Google Scholar]
  18. Gorbalenya A. E., Koonin E. V. 1989; Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Research 17:8413–8440
    [Google Scholar]
  19. Gorbalenya E. G., Blinov V. M., Donchenko A. P., Koonin E. V. 1989a; An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. Journal of Molecular Evolution 28:256–268
    [Google Scholar]
  20. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989b; Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17:4713–4730
    [Google Scholar]
  21. Gorbalenya A. E., Koonin E. V., Wolf Y. I. 1990; A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Letters 262:145–148
    [Google Scholar]
  22. Jurnak F. 1988; The three-dimensional structure of c-H-ras p21: implications for oncogene and G protein studies. Trends in Biochemical Sciences 13:195–198
    [Google Scholar]
  23. King A. M. Q., Lomonossoff G. P., Ryan M. D. 1991; Picorna-viruses and their relatives in the plant kingdom. Seminars in Virology 2:11–17
    [Google Scholar]
  24. Korneluk R. G., Quan G., Gravel R. A. 1985; Rapid and reliable dideoxy sequencing of double-stranded DNA. Gene 40:317–323
    [Google Scholar]
  25. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, U.S.A 82:488–492
    [Google Scholar]
  26. La Cour T. F. M., Nyborg J., Thirup S., Clark B. F. C. 1985; Structural details of the binding of guanosine diphosphate to elongation factor Tu from Escherichia coli as studied by X-ray crystallography. EMBO Journal 4:2385–2388
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of the bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  28. Lomonossoff G. P., Shanks M. 1983; The nucleotide sequence of cowpea mosaic virus B RNA. EMBO Journal 2:2253–2258
    [Google Scholar]
  29. McMaster G. K., Carmichael G. G. 1977; Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proceedings of the National Academy of Sciences, U.S.A 74:4835–4838
    [Google Scholar]
  30. Mirzayan C., Wimmer E. 1992; Genetic analysis of an NTP- binding motif in poliovirus polypeptide 2C. Virology 189:547–555
    [Google Scholar]
  31. Mirzayan C., Wimmer E. 1994; Biochemical studies on poliovirus polypeptide 2C. Evidence for ATPase activity. Virology 199:176–187
    [Google Scholar]
  32. Möller W., Amons R. 1985; Phosphate-binding sequences in nucleotide-binding proteins. FEBS Letters 186:1–7
    [Google Scholar]
  33. Neill J. D. 1990; Nucleotide sequence of a region of the feline calicivirus genome which encodes picorna-like RNA-dependent RNA-polymerase, cysteine protease and 2C polypeptide. Virus Research 17:145–160
    [Google Scholar]
  34. Peters S. A., Voorhorst W. G. B., Wery J., Wellink J., Van Kammen A. 1992; A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191:81–89
    [Google Scholar]
  35. Rezelman G., Franssen H. J., Goldbach R. W., Ie T. S., Van Kammen A. 1982; Limits to the independence of bottom component RNA of cowpea mosaic virus. Journal of General Virology 60:335–342
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  38. Teterina N. L., Kean K. M., Gorbalenya A. E., Agol V. I., Girard M. 1992; Analysis of the functional significance of amino acid residues in the putative NTP-binding pattern of the poliovirus 2C protein. Journal of General Virology 73:1977–1986
    [Google Scholar]
  39. Van Bokhoven H., Van Lent J. W. M., Custers R., Vlak J. M., Wellink J., Van Kammen A. 1992; Synthesis of the complete 200K polyprotein encoded by cowpea mosaic virus B-RNA in insect cells. Journal of General Virology 73:2775–2784
    [Google Scholar]
  40. Van Bokhoven H., Verver J., Wellink J., Van Kammen A. 1993; Protoplasts transiently expressing the 200K coding sequence of cowpea mosaic virus B-RNA support replication of M-RNA. Journal of General Virology 74:2233–2241
    [Google Scholar]
  41. Van Lent J., Storms M., Van Der Meer F., Wellink J., Goldbach R. 1991; Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. Journal of General Virology 72:2615–2623
    [Google Scholar]
  42. Vos P., Jaegle M., Wellink J., Van Kammen A., Goldbach R. 1988; Two viral proteins involved in the proteolytic processing of the cowpea mosaic virus polyproteins. Nucleic Acids Research 16:1967–1985
    [Google Scholar]
  43. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
  44. Weiner B. M., Bradley M. K. 1991; Specific mutation of a regulatory site within the ATP-binding region of simian virus 40 large T antigen. Journal of Virology 65:4973–4984
    [Google Scholar]
  45. Wellink J., Van Kammen A. 1989; Cell-to-cell transport of cowpea mosaic virus requires both 58K/48K proteins and the capsid proteins. Journal of General Virology 70:2279–2286
    [Google Scholar]
  46. Wellink J., Rezelman G., Goldbach R., Beyreuther K. 1986; Determination of the proteolytic processing sites in the polyprotein encoded by the bottom-component RNA of cowpea mosaic virus. Journal of Virology 59:50–58
    [Google Scholar]
  47. Wellink J., Van Lent J., Goldbach R. 1988; Detection of viral proteins in cytopathic structures in cowpea protoplasts infected with cowpea mosaic virus. Journal of General Virology 69:751–755
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-11-3167
Loading
/content/journal/jgv/10.1099/0022-1317-75-11-3167
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error